Modifying the HKCC for no readily apparent reason

Dependencies:   FastPWM3

main.cpp

Committer:
benkatz
Date:
2018-04-13
Revision:
37:c0f352d6e8e3
Parent:
36:d88fd41f60a6
Child:
38:67e4e1453a4b

File content as of revision 37:c0f352d6e8e3:

/// high-bandwidth 3-phase motor control, for robots
/// Written by benkatz, with much inspiration from bayleyw, nkirkby, scolton, David Otten, and others
/// Hardware documentation can be found at build-its.blogspot.com

/// Written for the STM32F446, but can be implemented on other STM32 MCU's with some further register-diddling

#define REST_MODE 0
#define CALIBRATION_MODE 1
#define MOTOR_MODE 2
#define SETUP_MODE 4
#define ENCODER_MODE 5

#define VERSION_NUM "1.4"


float __float_reg[64];                                                          // Floats stored in flash
int __int_reg[256];                                                             // Ints stored in flash.  Includes position sensor calibration lookup table

#include "mbed.h"
#include "PositionSensor.h"
#include "structs.h"
#include "foc.h"
#include "calibration.h"
#include "hw_setup.h"
#include "math_ops.h" 
#include "current_controller_config.h"
#include "hw_config.h"
#include "motor_config.h"
#include "stm32f4xx_flash.h"
#include "FlashWriter.h"
#include "user_config.h"
#include "PreferenceWriter.h"


 
PreferenceWriter prefs(6);

GPIOStruct gpio;
ControllerStruct controller;
COMStruct com;
ObserverStruct observer;

//using namespace CANnucleo;

CAN          can(PB_8, PB_9);                                        // CAN Rx pin name, CAN Tx pin name
CANMessage   rxMsg;
CANMessage   txMsg;


Serial pc(PA_2, PA_3);

PositionSensorAM5147 spi(16384, 0.0, NPP);  
//PositionSensorEncoder encoder(4096, 0, NPP); 


DigitalOut toggle(PC_8);

volatile int count = 0;
volatile int state = REST_MODE;
volatile int state_change;

 #define P_MIN -12.5f
 #define P_MAX 12.5f
 #define V_MIN -45.0f
 #define V_MAX 45.0f
 #define KP_MIN 0.0f
 #define KP_MAX 500.0f
 #define KD_MIN 0.0f
 #define KD_MAX 5.0f
 #define T_MIN -18.0f
 #define T_MAX 18.0f
 

/// CAN Reply Packet Structure ///
/// 16 bit position, between -4*pi and 4*pi
/// 12 bit velocity, between -30 and + 30 rad/s
/// 12 bit current, between -40 and 40;
/// CAN Packet is 5 8-bit words
/// Formatted as follows.  For each quantity, bit 0 is LSB
/// 0: [position[15-8]]
/// 1: [position[7-0]] 
/// 2: [velocity[11-4]]
/// 3: [velocity[3-0], current[11-8]]
/// 4: [current[7-0]]
void pack_reply(CANMessage *msg, float p, float v, float t){
    int p_int = float_to_uint(p, P_MIN, P_MAX, 16);
    int v_int = float_to_uint(v, V_MIN, V_MAX, 12);
    int t_int = float_to_uint(t, -T_MAX, T_MAX, 12);
    msg->data[0] = CAN_ID;
    msg->data[1] = p_int>>8;
    msg->data[2] = p_int&0xFF;
    msg->data[3] = v_int>>4;
    msg->data[4] = ((v_int&0xF)<<4) + (t_int>>8);
    msg->data[5] = t_int&0xFF;
    }
    
/// CAN Command Packet Structure ///
/// 16 bit position command, between -4*pi and 4*pi
/// 12 bit velocity command, between -30 and + 30 rad/s
/// 12 bit kp, between 0 and 500 N-m/rad
/// 12 bit kd, between 0 and 100 N-m*s/rad
/// 12 bit feed forward torque, between -18 and 18 N-m
/// CAN Packet is 8 8-bit words
/// Formatted as follows.  For each quantity, bit 0 is LSB
/// 0: [position[15-8]]
/// 1: [position[7-0]] 
/// 2: [velocity[11-4]]
/// 3: [velocity[3-0], kp[11-8]]
/// 4: [kp[7-0]]
/// 5: [kd[11-4]]
/// 6: [kd[3-0], torque[11-8]]
/// 7: [torque[7-0]]
void unpack_cmd(CANMessage msg, ControllerStruct * controller){
        int p_int = (msg.data[0]<<8)|msg.data[1];
        int v_int = (msg.data[2]<<4)|(msg.data[3]>>4);
        int kp_int = ((msg.data[3]&0xF)<<8)|msg.data[4];
        int kd_int = (msg.data[5]<<4)|(msg.data[6]>>4);
        int t_int = ((msg.data[6]&0xF)<<8)|msg.data[7];
        
        controller->p_des = uint_to_float(p_int, P_MIN, P_MAX, 16);
        controller->v_des = uint_to_float(v_int, V_MIN, V_MAX, 12);
        controller->kp = uint_to_float(kp_int, KP_MIN, KP_MAX, 12);
        controller->kd = uint_to_float(kd_int, KD_MIN, KD_MAX, 12);
        controller->t_ff = uint_to_float(t_int, T_MIN, T_MAX, 12);
    //printf("Received   ");
    //printf("%.3f  %.3f  %.3f  %.3f  %.3f   %.3f", controller->p_des, controller->v_des, controller->kp, controller->kd, controller->t_ff, controller->i_q_ref);
    //printf("\n\r");
    }

void onMsgReceived() {
    //msgAvailable = true;
    //printf("%.3f   %.3f   %.3f\n\r", controller.theta_mech, controller.dtheta_mech, controller.i_q);
    can.read(rxMsg);  
    if((rxMsg.id == CAN_ID)){
        controller.timeout = 0;
        if(((rxMsg.data[0]==0xFF) & (rxMsg.data[1]==0xFF) & (rxMsg.data[2]==0xFF) & (rxMsg.data[3]==0xFF) & (rxMsg.data[4]==0xFF) & (rxMsg.data[5]==0xFF) & (rxMsg.data[6]==0xFF) & (rxMsg.data[7]==0xFC))){
            state = MOTOR_MODE;
            state_change = 1;
            }
        else if(((rxMsg.data[0]==0xFF) & (rxMsg.data[1]==0xFF) & (rxMsg.data[2]==0xFF) & (rxMsg.data[3]==0xFF) * (rxMsg.data[4]==0xFF) & (rxMsg.data[5]==0xFF) & (rxMsg.data[6]==0xFF) & (rxMsg.data[7]==0xFD))){
            state = REST_MODE;
            state_change = 1;
            gpio.led->write(0);; 
            }
        else if(((rxMsg.data[0]==0xFF) & (rxMsg.data[1]==0xFF) & (rxMsg.data[2]==0xFF) & (rxMsg.data[3]==0xFF) * (rxMsg.data[4]==0xFF) & (rxMsg.data[5]==0xFF) & (rxMsg.data[6]==0xFF) & (rxMsg.data[7]==0xFE))){
            spi.ZeroPosition();
            }
        else if(state == MOTOR_MODE){
            unpack_cmd(rxMsg, &controller);
            }
        pack_reply(&txMsg, controller.theta_mech, controller.dtheta_mech, controller.i_q_filt*KT_OUT);
        can.write(txMsg);
        }
    
}

void enter_menu_state(void){
    printf("\n\r\n\r\n\r");
    printf(" Commands:\n\r");
    printf(" m - Motor Mode\n\r");
    printf(" c - Calibrate Encoder\n\r");
    printf(" s - Setup\n\r");
    printf(" e - Display Encoder\n\r");
    printf(" z - Set Zero Position\n\r");
    printf(" esc - Exit to Menu\n\r");
    state_change = 0;
    gpio.enable->write(0);
    gpio.led->write(0);
    }

void enter_setup_state(void){
    printf("\n\r\n\r Configuration Options \n\r\n\n");
    printf(" %-4s %-31s %-5s %-6s %-5s\n\r\n\r", "prefix", "parameter", "min", "max", "current value");
    printf(" %-4s %-31s %-5s %-6s %.1f\n\r", "b", "Current Bandwidth (Hz)", "100", "2000", I_BW);
    printf(" %-4s %-31s %-5s %-6s %-5i\n\r", "i", "CAN ID", "0", "127", CAN_ID);
    printf(" %-4s %-31s %-5s %-6s %-5i\n\r", "m", "CAN Master ID", "0", "127", CAN_MASTER);
    printf(" %-4s %-31s %-5s %-6s %.1f\n\r", "l", "Torque Limit (N-m)", "0.0", "18.0", TORQUE_LIMIT);
    printf(" %-4s %-31s %-5s %-6s %d\n\r", "t", "CAN Timeout (cycles)(0 = none)", "0", "100000", CAN_TIMEOUT);
    printf("\n\r To change a value, type 'prefix''value''ENTER'\n\r i.e. 'b1000''ENTER'\n\r\n\r");
    state_change = 0;
    }
    
void enter_torque_mode(void){
    controller.ovp_flag = 0;
    gpio.enable->write(1);                                                      // Enable gate drive
    reset_foc(&controller);                                                     // Tesets integrators, and other control loop parameters
    wait(.001);
    controller.i_d_ref = 0;
    controller.i_q_ref = 0;                                                     // Current Setpoints
    gpio.led->write(1);                                                     // Turn on status LED
    state_change = 0;
    printf("\n\r Entering Motor Mode \n\r");
    }
    
void calibrate(void){
    gpio.enable->write(1);                                                      // Enable gate drive
    gpio.led->write(1);                                                    // Turn on status LED
    order_phases(&spi, &gpio, &controller, &prefs);                             // Check phase ordering
    calibrate(&spi, &gpio, &controller, &prefs);                                // Perform calibration procedure
    gpio.led->write(0);;                                                     // Turn off status LED
    wait(.2);
    gpio.enable->write(0);                                                      // Turn off gate drive
    printf("\n\r Calibration complete.  Press 'esc' to return to menu\n\r");
     state_change = 0;
    }
    
void print_encoder(void){
    printf(" Mechanical Angle:  %f    Electrical Angle:  %f    Raw:  %d\n\r", spi.GetMechPosition(), spi.GetElecPosition(), spi.GetRawPosition());
    wait(.05);
    }

/// Current Sampling Interrupt ///
/// This runs at 40 kHz, regardless of of the mode the controller is in ///
extern "C" void TIM1_UP_TIM10_IRQHandler(void) {
  if (TIM1->SR & TIM_SR_UIF ) {

        ///Sample current always ///
        ADC1->CR2  |= 0x40000000;                                               // Begin sample and conversion
        //volatile int delay;   
        //for (delay = 0; delay < 55; delay++);
        controller.adc2_raw = ADC2->DR;                                         // Read ADC Data Registers
        controller.adc1_raw = ADC1->DR;
        controller.adc3_raw = ADC3->DR;
        spi.Sample();                                                           // sample position sensor
        controller.theta_elec = spi.GetElecPosition();
        controller.theta_mech = (1.0f/GR)*spi.GetMechPosition();
        controller.dtheta_mech = (1.0f/GR)*spi.GetMechVelocity();  
        controller.dtheta_elec = spi.GetElecVelocity();
        controller.v_bus = 0.95f*controller.v_bus + 0.05f*((float)controller.adc3_raw)*V_SCALE;
        ///
        
        /// Check state machine state, and run the appropriate function ///
        switch(state){
            case REST_MODE:                                                     // Do nothing
                if(state_change){
                    enter_menu_state();
                    }
                break;
            
            case CALIBRATION_MODE:                                              // Run encoder calibration procedure
                if(state_change){
                    calibrate();
                    }
                break;
             
            case MOTOR_MODE:                                                   // Run torque control
                if(state_change){
                    enter_torque_mode();
                    count = 0;
                    }
                else{
                /*
                if(controller.v_bus>28.0f){         //Turn of gate drive if bus voltage is too high, to prevent FETsplosion if the bus is cut during regen
                    gpio.enable->write(0);
                    controller.ovp_flag = 1;
                    state = REST_MODE;
                    state_change = 1;
                    printf("OVP Triggered!\n\r");
                    }
                    */  

                torque_control(&controller);     
                if((controller.timeout > CAN_TIMEOUT) && (CAN_TIMEOUT > 0)){
                    controller.i_d_ref = 0;
                    controller.i_q_ref = 0;
                    controller.kp = 0;
                    controller.kd = 0;
                    controller.t_ff = 0;
                    } 
                commutate(&controller, &observer, &gpio, controller.theta_elec);           // Run current loop
                controller.timeout += 1;
                /*
                count++;
                if(count == 1000){
                     count = 0;
                     }
                     */
            
                }     
                break;
            case SETUP_MODE:
                if(state_change){
                    enter_setup_state();
                }
                break;
            case ENCODER_MODE:
                print_encoder();
                break;
                }                 
      }
  TIM1->SR = 0x0;                                                               // reset the status register
}


char cmd_val[8] = {0};
char cmd_id = 0;
char char_count = 0;

/// Manage state machine with commands from serial terminal or configurator gui ///
/// Called when data received over serial ///
void serial_interrupt(void){
    while(pc.readable()){
        char c = pc.getc();
        if(c == 27){
                state = REST_MODE;
                state_change = 1;
                char_count = 0;
                cmd_id = 0;
                gpio.led->write(0);; 
                for(int i = 0; i<8; i++){cmd_val[i] = 0;}
                }
        if(state == REST_MODE){
            switch (c){
                case 'c':
                    state = CALIBRATION_MODE;
                    state_change = 1;
                    break;
                case 'm':
                    state = MOTOR_MODE;
                    state_change = 1;
                    break;
                case 'e':
                    state = ENCODER_MODE;
                    state_change = 1;
                    break;
                case 's':
                    state = SETUP_MODE;
                    state_change = 1;
                    break;
                case 'z':
                    spi.SetMechOffset(0);
                    spi.Sample();
                    wait_us(20);
                    M_OFFSET = spi.GetMechPosition();
                    if (!prefs.ready()) prefs.open();
                        prefs.flush();                                                  // Write new prefs to flash
                        prefs.close();    
                        prefs.load(); 
                    spi.SetMechOffset(M_OFFSET);
                    printf("\n\r  Saved new zero position:  %.4f\n\r\n\r", M_OFFSET);
                    
                    break;
                }
                
                }
        else if(state == SETUP_MODE){
            if(c == 13){
                switch (cmd_id){
                    case 'b':
                        I_BW = fmaxf(fminf(atof(cmd_val), 2000.0f), 100.0f);
                        break;
                    case 'i':
                        CAN_ID = atoi(cmd_val);
                        break;
                    case 'm':
                        CAN_MASTER = atoi(cmd_val);
                        break;
                    case 'l':
                        TORQUE_LIMIT = fmaxf(fminf(atof(cmd_val), 18.0f), 0.0f);
                        break;
                    case 't':
                        CAN_TIMEOUT = atoi(cmd_val);
                        break;
                    default:
                        printf("\n\r '%c' Not a valid command prefix\n\r\n\r", cmd_id);
                        break;
                    }
                    
                if (!prefs.ready()) prefs.open();
                prefs.flush();                                                  // Write new prefs to flash
                prefs.close();    
                prefs.load();                                              
                state_change = 1;
                char_count = 0;
                cmd_id = 0;
                for(int i = 0; i<8; i++){cmd_val[i] = 0;}
                }
            else{
                if(char_count == 0){cmd_id = c;}
                else{
                    cmd_val[char_count-1] = c;
                    
                }
                pc.putc(c);
                char_count++;
                }
            }
        else if (state == ENCODER_MODE){
            switch (c){
                case 27:
                    state = REST_MODE;
                    state_change = 1;
                    break;
                    }
            }
            
        }
    }
       
int main() {
    
    controller.v_bus = V_BUS;
    controller.mode = 0;
    Init_All_HW(&gpio);                                                         // Setup PWM, ADC, GPIO

    wait(.1);
    gpio.enable->write(1);
    TIM1->CCR3 = 0x708*(1.0f);                        // Write duty cycles
    TIM1->CCR2 = 0x708*(1.0f);
    TIM1->CCR1 = 0x708*(1.0f);
    zero_current(&controller.adc1_offset, &controller.adc2_offset);             // Measure current sensor zero-offset
    gpio.enable->write(0);
    reset_foc(&controller);                                                     // Reset current controller
    TIM1->CR1 ^= TIM_CR1_UDIS;
    //TIM1->CR1 |= TIM_CR1_UDIS; //enable interrupt
    
    wait(.1);
    NVIC_SetPriority(TIM1_UP_TIM10_IRQn, 2);                                             // commutation > communication
    NVIC_SetPriority(CAN1_RX0_IRQn, 3);


    can.frequency(1000000);                                                     // set bit rate to 1Mbps
    can.filter(CAN_ID<<21, 0xFFE00004, CANStandard, 0);
    //can.filter(CAN_ID, 0xF, CANStandard, 0);
    can.attach(&onMsgReceived);                                     // attach 'CAN receive-complete' interrupt handler                                                                    
    txMsg.id = CAN_MASTER;
    txMsg.len = 6;
    rxMsg.len = 8;
    
    prefs.load();                                                               // Read flash
    if(isnan(E_OFFSET)){E_OFFSET = 0.0f;}
    if(isnan(M_OFFSET)){M_OFFSET = 0.0f;}
    spi.SetElecOffset(E_OFFSET);                                                // Set position sensor offset
    spi.SetMechOffset(M_OFFSET);
    int lut[128] = {0};
    memcpy(&lut, &ENCODER_LUT, sizeof(lut));
    spi.WriteLUT(lut);                                                          // Set potision sensor nonlinearity lookup table
    
    pc.baud(921600);                                                            // set serial baud rate
    wait(.01);
    pc.printf("\n\r\n\r HobbyKing Cheetah\n\r\n\r");
    wait(.01);
    printf("\n\r Debug Info:\n\r");
    printf(" Firmware Version: %s\n\r", VERSION_NUM);
    printf(" ADC1 Offset: %d    ADC2 Offset: %d\n\r", controller.adc1_offset, controller.adc2_offset);
    printf(" Position Sensor Electrical Offset:   %.4f\n\r", E_OFFSET);
    printf(" Output Zero Position:  %.4f\n\r", M_OFFSET);
    printf(" CAN ID:  %d\n\r", CAN_ID);
        
    pc.attach(&serial_interrupt);                                               // attach serial interrupt
    
    state_change = 1;

    
    while(1) {

    }
}