Bayley Wang
/
qonly_controller
derp
main.cpp
- Committer:
- bwang
- Date:
- 2016-03-30
- Revision:
- 7:caebf421f288
- Parent:
- 4:a6669248ce4d
- Child:
- 8:314074b56470
File content as of revision 7:caebf421f288:
#include "mbed.h" #include "math.h" #include "PositionSensor.h" #include "FastPWM.h" #include "Transforms.h" #include "config.h" FastPWM *a; FastPWM *b; FastPWM *c; DigitalOut en(EN); //DigitalOut toggle(PC_10); PositionSensorEncoder pos(CPR, 0); Serial pc(USBTX, USBRX); int state = 0; int adval1, adval2; float ia, ib, ic, alpha, beta, d, q, vd, vq, p = 0.0f; float ia_supp_offset = 0.0f, ib_supp_offset = 0.0f; //current sensor offset due to bias resistor inaccuracies, etc (mV) float d_integral = 0.0f, q_integral = 0.0f; float last_d = 0.0f, last_q = 0.0f; float d_ref = -0.0f, q_ref = 30.0f; void commutate(); void zero_current(); void config_globals(); void startup_msg(); extern "C" void TIM1_UP_TIM10_IRQHandler(void) { if (TIM1->SR & TIM_SR_UIF ) { //toggle = 1; ADC1->CR2 |= 0x40000000; volatile int delay; for (delay = 0; delay < 35; delay++); //toggle = 0; adval1 = ADC1->DR; adval2 = ADC2->DR; commutate(); } TIM1->SR = 0x00; } void zero_current(){ for (int i = 0; i < 1000; i++){ ia_supp_offset += (float) (ADC1->DR); ib_supp_offset += (float) (ADC2->DR); ADC1->CR2 |= 0x40000000; wait_us(100); } ia_supp_offset /= 1000.0f; ib_supp_offset /= 1000.0f; ia_supp_offset = ia_supp_offset / 4096.0f * AVDD - I_OFFSET; ib_supp_offset = ib_supp_offset / 4096.0f * AVDD - I_OFFSET; } void config_globals() { pc.baud(115200); //Enable clocks for GPIOs RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN; RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN; RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; //enable TIM1 clock a = new FastPWM(PWMA); b = new FastPWM(PWMB); c = new FastPWM(PWMC); NVIC_EnableIRQ(TIM1_UP_TIM10_IRQn); //Enable TIM1 IRQ TIM1->DIER |= TIM_DIER_UIE; //enable update interrupt TIM1->CR1 = 0x40; //CMS = 10, interrupt only when counting up TIM1->CR1 |= TIM_CR1_ARPE; //autoreload on, TIM1->RCR |= 0x01; //update event once per up/down count of tim1 TIM1->EGR |= TIM_EGR_UG; TIM1->PSC = 0x00; //no prescaler, timer counts up in sync with the peripheral clock TIM1->ARR = 0x1770; //15 Khz TIM1->CCER |= ~(TIM_CCER_CC1NP); //Interupt when low side is on. TIM1->CR1 |= TIM_CR1_CEN; //ADC Setup RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; // clock for ADC1 RCC->APB2ENR |= RCC_APB2ENR_ADC2EN; // clock for ADC2 ADC->CCR = 0x00000006; //Regular simultaneous mode, 3 channels ADC1->CR2 |= ADC_CR2_ADON; //ADC1 on ADC1->SQR3 = 0x0000004; //PA_4 as ADC1, sequence 0 ADC2->CR2 |= ADC_CR2_ADON; //ADC2 ON ADC2->SQR3 = 0x00000008; //PB_0 as ADC2, sequence 1 GPIOA->MODER |= (1 << 8); GPIOA->MODER |= (1 << 9); GPIOA->MODER |= (1 << 2); GPIOA->MODER |= (1 << 3); GPIOA->MODER |= (1 << 0); GPIOA->MODER |= (1 << 1); GPIOB->MODER |= (1 << 0); GPIOB->MODER |= (1 << 1); GPIOC->MODER |= (1 << 2); GPIOC->MODER |= (1 << 3); //DAC setup RCC->APB1ENR |= 0x20000000; DAC->CR |= DAC_CR_EN2; GPIOA->MODER |= (1 << 10); GPIOA->MODER |= (1 << 11); //Zero duty cycles set_dtc(a, 0.0f); set_dtc(b, 0.0f); set_dtc(c, 0.0f); wait_ms(250); zero_current(); en = 1; } void startup_msg() { pc.printf("%s\n\r\n\r", "FOC'ed in the Bot Rev A."); pc.printf("%s\n\r", "====Config Data===="); pc.printf("Current Sensor Offset: %f mV\n\r", I_OFFSET); pc.printf("Current Sensor Scale: %f mv/A\n\r", I_SCALE); pc.printf("Bus Voltage: %f V\n\r", BUS_VOLTAGE); pc.printf("Loop KP: %f\n\r", KP); pc.printf("Loop KI: %f\n\r", KI); pc.printf("Ia offset: %f mV\n\r", ia_supp_offset); pc.printf("Ib offset: %f mV\n\r", ib_supp_offset); pc.printf("\n\r"); } void commutate() { p = pos.GetElecPosition() - POS_OFFSET; if (p < 0) p += 2 * PI; if (p > 2 * PI) p -= 2 * PI; float sin_p = sinf(p); float cos_p = cosf(p); //float pos_dac = 0.8f * p / (2 * PI) + 0.1f; //DAC->DHR12R2 = (unsigned int) (pos_dac * 4096); ia = ((float) adval1 / 4096.0f * AVDD - I_OFFSET - ia_supp_offset) / I_SCALE; ib = ((float) adval2 / 4096.0f * AVDD - I_OFFSET - ib_supp_offset) / I_SCALE; ic = -ia - ib; float u = ib; float v = ic; alpha = u; beta = 1 / sqrtf(3.0f) * u + 2 / sqrtf(3.0f) * v; d = alpha * cos_p - beta * sin_p; q = -alpha * sin_p - beta * cos_p; float d_err = d_ref - d; float q_err = q_ref - q; d_integral += d_err * KI; q_integral += q_err * KI; if (q_integral > INTEGRAL_MAX) q_integral = INTEGRAL_MAX; if (d_integral > INTEGRAL_MAX) d_integral = INTEGRAL_MAX; if (q_integral < -INTEGRAL_MAX) q_integral = -INTEGRAL_MAX; if (d_integral < -INTEGRAL_MAX) d_integral = -INTEGRAL_MAX; vd = KP * d_err + d_integral; vq = KP * q_err + q_integral; if (vd < -1.0f) vd = -1.0f; if (vd > 1.0f) vd = 1.0f; if (vq < -1.0f) vq = -1.0f; if (vq > 1.0f) vq = 1.0f; //DAC->DHR12R2 = (unsigned int) (q * 20 + 2048); //DAC->DHR12R2 = (unsigned int) (-vd * 2000 + 2048); //vd = 0.0f; //vq = 1.0f; float valpha = vd * cos_p - vq * sin_p; float vbeta = vd * sin_p + vq * cos_p; float va = valpha; float vb = -0.5f * valpha - sqrtf(3) / 2.0f * vbeta; float vc = -0.5f * valpha + sqrtf(3) / 2.0f * vbeta; //DAC->DHR12R2 = (unsigned int) (-va * 1500 + 2048); set_dtc(a, 0.5f + 0.5f * va); set_dtc(b, 0.5f + 0.5f * vb); set_dtc(c, 0.5f + 0.5f * vc); } int main() { config_globals(); startup_msg(); for (;;) { //pc.printf("%f\n\r", p); //wait_ms(100); /* q_ref = 0.0f; wait(3); toggle = state; state = !state; q_ref = -50.0f; wait(3); toggle = state; state = !state; */ } }