APC UPS monitoring program
Dependencies: EthernetInterface NetworkAPI mbed-rtos mbed
Fork of ups_mon_141217_bumisee by
USBHost.cpp
- Committer:
- bumisee
- Date:
- 2015-01-19
- Revision:
- 0:fb1f6d3926fe
File content as of revision 0:fb1f6d3926fe:
/* I changed a bit the code but all credit goes to the amazing work of : Copyright (c) 2010 Peter Barrett Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "mbed.h" #include "USBHost.h" // Config (default uses x bytes) #define MAX_DEVICES 8 // Max number of devices #define MAX_ENDPOINTS_TOTAL 16 // Max number of endpoints total #define MAX_ENDPOINTS_PER_DEVICE 8 // Max number of endpoints for any one device #define USBLOG 1 #if USBLOG #define LOG(...) printf(__VA_ARGS__) #else #define LOG(...) do {} while(0) #endif // USB host structures #define USB_RAM_SIZE 16*1024 // AHB SRAM block 1 TODO MACHINE DEPENDENT #define USB_RAM_BASE 0x2007C000 #define TOKEN_SETUP 0 #define TOKEN_IN 1 #define TOKEN_OUT 2 // Status flags from hub #define PORT_CONNECTION 0 #define PORT_ENABLE 1 #define PORT_SUSPEND 2 #define PORT_OVER_CURRENT 3 #define PORT_RESET 4 #define PORT_POWER 8 #define PORT_LOW_SPEED 9 #define C_PORT_CONNECTION 16 #define C_PORT_ENABLE 17 #define C_PORT_SUSPEND 18 #define C_PORT_OVER_CURRENT 19 #define C_PORT_RESET 20 typedef struct { u8 bm_request_type; u8 b_request; u16 w_value; u16 w_index; u16 w_length; } Setup; // Hub stuff is kept private just to keep api simple int SetPortFeature(int device, int feature, int index); int ClearPortFeature(int device, int feature, int index); int SetPortPower(int device, int port); int SetPortReset(int device, int port); int GetPortStatus(int device, int port, u32* status); //=================================================================== //=================================================================== // Hardware defines // HcControl #define PeriodicListEnable 0x00000004 #define IsochronousEnable 0x00000008 #define ControlListEnable 0x00000010 #define BulkListEnable 0x00000020 #define OperationalMask 0x00000080 #define HostControllerFunctionalState 0x000000C0 // HcCommandStatus #define HostControllerReset 0x00000001 #define ControlListFilled 0x00000002 #define BulkListFilled 0x00000004 // HcInterruptStatus Register #define WritebackDoneHead 0x00000002 #define StartofFrame 0x00000004 #define ResumeDetected 0x00000008 #define UnrecoverableError 0x00000010 #define FrameNumberOverflow 0x00000020 #define RootHubStatusChange 0x00000040 #define OwnershipChange 0x00000080 #define MasterInterruptEnable 0x80000000 // HcRhStatus #define SetGlobalPower 0x00010000 #define DeviceRemoteWakeupEnable 0x00008000 // HcRhPortStatus (hub 0, port 1) #define CurrentConnectStatus 0x00000001 #define PortEnableStatus 0x00000002 #define PortSuspendStatus 0x00000004 #define PortOverCurrentIndicator 0x00000008 #define PortResetStatus 0x00000010 #define PortPowerStatus 0x00000100 #define LowspeedDevice 0x00000200 #define HighspeedDevice 0x00000400 #define ConnectStatusChange (CurrentConnectStatus << 16) #define PortResetStatusChange (PortResetStatus << 16) #define TD_ROUNDING (u32)0x00040000 #define TD_SETUP (u32)0x00000000 #define TD_IN (u32)0x00100000 #define TD_OUT (u32)0x00080000 #define TD_DELAY_INT(x) (u32)((x) << 21) #define TD_TOGGLE_0 (u32)0x02000000 #define TD_TOGGLE_1 (u32)0x03000000 #define TD_CC (u32)0xF0000000 // HostController EndPoint Descriptor typedef struct { volatile u32 Control; volatile u32 TailTd; volatile u32 HeadTd; volatile u32 Next; } HCED; // HostController Transfer Descriptor typedef struct { volatile u32 Control; volatile u32 CurrBufPtr; volatile u32 Next; volatile u32 BufEnd; } HCTD; // Host Controller Communication Area typedef struct { volatile u32 InterruptTable[32]; volatile u16 FrameNumber; volatile u16 FrameNumberPad; volatile u32 DoneHead; volatile u8 Reserved[120]; } HCCA; //==================================================================================== //==================================================================================== class HostController; class Endpoint; class Device; // must be 3*16 bytes long class Endpoint { public: HCED EndpointDescriptor; // Pointer to EndpointDescriptor == Pointer to Endpoint HCTD TDHead; enum State { Free, NotQueued, Idle, SetupQueued, DataQueued, StatusQueued, CallbackPending }; volatile u8 CurrentState; u8 Flags; // 0x80 In, 0x03 mask endpoint type u16 Length; u8* Data; USBCallback Callback; // Must be a multiple of 16 bytes long void* UserData; int Address() { int ep = (EndpointDescriptor.Control >> 7) & 0xF; if (ep) ep |= Flags & 0x80; return ep; } int Device() { return EndpointDescriptor.Control & 0x7F; } int Status() { return (TDHead.Control >> 28) & 0xF; } u32 Enqueue(u32 head) { if (CurrentState == NotQueued) { EndpointDescriptor.Next = head; head = (u32)&EndpointDescriptor; CurrentState = Idle; } return head; } }; class Device { public: u8 _endpointMap[MAX_ENDPOINTS_PER_DEVICE*2]; u8 Hub; u8 Port; u8 Addr; u8 Pad; // Only if this device is a hub u8 HubPortCount; // nonzero if this is a hub u8 HubInterruptData; u8 HubMap; u8 HubMask; int Flags; // 1 = Disconnected Setup SetupBuffer; // Allocate endpoint zero int Init(DeviceDescriptor* d, int hub, int port, int addr, int lowSpeed) { Hub = hub; Port = port; Addr = addr; Flags = lowSpeed; memset(_endpointMap,0xFF,sizeof(_endpointMap)); return 0; } int SetEndpointIndex(int ep, int endpointIndex) { for (int i = 0; i < MAX_ENDPOINTS_PER_DEVICE*2; i += 2) { if (_endpointMap[i] == 0xFF) // Add endpoint to map { _endpointMap[i] = ep; _endpointMap[i+1] = endpointIndex; return 0; } } return ERR_ENDPOINT_NONE_LEFT; } int GetEndpointIndex(int ep) { for (int i = 0; i < MAX_ENDPOINTS_PER_DEVICE*2; i += 2) { if (_endpointMap[i] == ep) return _endpointMap[i+1]; if (_endpointMap[i] == 0xFF) break; } return -1; } }; class HostController { public: HCCA CommunicationArea; Endpoint Endpoints[MAX_ENDPOINTS_TOTAL]; // Multiple of 16 Endpoint EndpointZero; // For device enumeration HCTD _commonTail; Setup _setupZero; Device Devices[MAX_DEVICES]; u32 _frameNumber; // 32 bit ms counter u8 _callbacksPending; // Endpoints with callbacks are pending, set from ISR via ProcessDoneQueue u8 _rootHubStatusChange; // Root hub status has changed, set from ISR u8 _unused0; u8 _unused1; u8 _connectPending; // Reset has initiated a connect u8 _connectCountdown; // Number of ms left after reset before we can connect u8 _connectHub; // Will connect on this hub u8 _connectPort; // ... and this port u8 _device; u8 _connectstate; u8 SRAM[0]; // Start of free SRAM u8 _datareceive; int Loop(int u_flag, u8* u_data) { u8 buffer[255]; u16 elapsed = CommunicationArea.FrameNumber - (u16)_frameNumber; // extend to 32 bits _frameNumber += elapsed; _datareceive = 0; // Do callbacks, if any while (_callbacksPending) { for (int i = 0; i < MAX_ENDPOINTS_TOTAL; i++) { Endpoint* endpoint = Endpoints + i; if (endpoint->CurrentState == Endpoint::CallbackPending) { _callbacksPending--; endpoint->CurrentState = Endpoint::Idle; //remember: //typedef void (*USBCallback)(int device, int endpoint, int status, u8* data, int len, void* userData); endpoint->Callback(endpoint->Device(),endpoint->Address(),endpoint->Status(),endpoint->Data,endpoint->Length,endpoint->UserData); } } } // Deal with changes on the root hub if (_rootHubStatusChange) { u32 status = LPC_USB->HcRhPortStatus1; _rootHubStatusChange = 0; if (status >> 16) { LOG("LOOP HUB Change\n"); HubStatusChange(0,1,status); LPC_USB->HcRhPortStatus1 = status & 0xFFFF0000; // clear status changes if(status== 131841){ HubStatusChange(0,1,1049347); LPC_USB->HcRhPortStatus1 = 1049347 & 0xFFFF0000; // clear status changes } if(status ==0x30100){ LOG("DisConnect!!!!!!!!!!!!!!!!!!\n"); _datareceive=UPS_DISCONNECT; } } } // Connect after reset timeout if (_connectCountdown) { if (elapsed >= _connectCountdown) { _connectCountdown = 0; _device = Connect(_connectHub,_connectPort & 0x7F,_connectPort & 0x80); LOG("Connect!!!!!!!!!!!!!!!!!!\n"); _datareceive = UPS_CONNECT; } else _connectCountdown -= elapsed; } if(u_flag){ //UPS 상태 GetReport(_device, 0x03,7, buffer, 3); for (int i=0; i<1; i++) { u_data[i] = buffer[i+1]; } //Battery remain capacity GetReport(_device, 0x03,12, buffer, 2); for (int i=0; i<1; i++) { u_data[i+1] = buffer[i+1]; } //Battry remain time GetReport(_device, 0x03,13, buffer, 3); for (int i=0; i<2; i++) { u_data[i+2] = buffer[i+1]; } _datareceive = UPS_REPORT; } return _datareceive; }// END OF VOID LOOP() // HubInterrupt - bitmap in dev->HubInterruptData void HubInterrupt(int device) { Device* dev = &Devices[device-1]; for (int i = 0; i < dev->HubPortCount; i++) { int port = i+1; if (dev->HubInterruptData & (1 << port)) { u32 status = 0; GetPortStatus(device,port,&status); if (status >> 16) { if (_connectPending && (status & ConnectStatusChange)) continue; // Don't connect again until previous device has been added and addressed HubStatusChange(device,port,status); if (status & ConnectStatusChange) ClearPortFeature(device,C_PORT_CONNECTION,port); if (status & PortResetStatusChange) ClearPortFeature(device,C_PORT_RESET,port); } } } } static void HubInterruptCallback(int device, int endpoint, int status, u8* data, int len, void* userData) { HostController* controller = (HostController*)userData; if (status == 0) controller->HubInterrupt(device); USBInterruptTransfer(device,endpoint,data,1,HubInterruptCallback,userData); } int InitHub(int device) { u8 buf[16]; int r= USBControlTransfer(device,DEVICE_TO_HOST | REQUEST_TYPE_CLASS | RECIPIENT_DEVICE,GET_DESCRIPTOR,(DESCRIPTOR_TYPE_HUB << 8),0,buf,sizeof(buf)); if (r < 0) return ERR_HUB_INIT_FAILED; // turn on power on the hubs ports Device* dev = &Devices[device-1]; int ports = buf[2]; dev->HubPortCount = ports; for (int i = 0; i < ports; i++) SetPortPower(device,i+1); // Enable hub change interrupts return USBInterruptTransfer(device,0x81,&dev->HubInterruptData,1,HubInterruptCallback,this); } int AddEndpoint(int device, int ep, int attributes, int maxPacketSize, int interval) { LOG("AddEndpoint D:%02X A:%02X T:%02X P:%04X I:%02X\n",device,ep,attributes,maxPacketSize,interval); Device* dev = &Devices[device-1]; Endpoint* endpoint = AllocateEndpoint(device,ep,attributes,maxPacketSize); if (!endpoint) return ERR_ENDPOINT_NONE_LEFT; dev->SetEndpointIndex(ep,endpoint - Endpoints); endpoint->EndpointDescriptor.Control |= dev->Flags; // Map in slow speed return 0; // TODO ed->bInterval } int AddEndpoint(int device, EndpointDescriptor* ed) { return AddEndpoint(device,ed->bEndpointAddress,ed->bmAttributes,ed->wMaxPacketSize,ed->bInterval); } // allocate a endpoint Endpoint* AllocateEndpoint(int device, int endpointAddress, int type, int maxPacketSize) { for (int i = 0; i < MAX_ENDPOINTS_TOTAL; i++) { Endpoint* ep = &Endpoints[i]; if (ep->CurrentState == 0) { //LOG("Allocated endpoint %d to %02X:%02X\n",i,device,endpointAddress); ep->Flags = (endpointAddress & 0x80) | (type & 3); ep->CurrentState = Endpoint::NotQueued; ep->EndpointDescriptor.Control = (maxPacketSize << 16) | ((endpointAddress & 0x7F) << 7) | device; return ep; } } return 0; } Endpoint* GetEndpoint(int device, int ep) { if (device == 0) { //printf("WARNING: USING DEVICE 0\n"); return &EndpointZero; } if (device > MAX_DEVICES) return 0; int i = Devices[device-1].GetEndpointIndex(ep); if (i == -1) return 0; return Endpoints + i; } int Transfer(Endpoint* endpoint, int token, u8* data, int len, int state) { #ifdef USBLOG /* LOG("Transfer EDaddres:%02X Token:%d Len:%d State:%d \n",endpoint->Address(),token,len,state); LOG("Data %s: ",(token==TOKEN_IN)? "in": "out"); //print the data: //@BUG, little endian- bigendian ?? for (int i=0; i<len; i++) { if ( ((i%(int)8)==0) ) LOG("\n"); LOG("hx%02X ",data[i]); } LOG("\n"); if ( token==TOKEN_IN && len<30 && len>8) { LOG("bLength: %d d \n", data[0]); LOG("bDescriptorType: %d -",data[1]); bDescriptorType Descriptor Type Required? 01h device Yes. 02h configuration Yes. 03h string No. Optional descriptive text. 04h interface Yes. 05h endpoint No, if the device uses only Endpoint 0. 06h device_qualifier Yes, for devices that support both full and high speeds. Not allowed for other devices. 07h other_speed_configuration Yes, for devices that support both full and high speeds. Not allowed for other devices. 08h interface_power No. Supports interface-level power management. 09h OTG For On-The-Go devices only. 0Ah debug No. 0Bh interface_association For composite devices. switch (data[1]) { case(1): { LOG("DEVICE"); break;} case(2): { LOG("CONFIGURATION"); break;} case(3): { LOG("STRING"); break;} case(4): { LOG("INTERFACE"); break;} case(5): { LOG("ENDPOINT"); break;} case(6): { LOG("DEVICE_QUALIFIER"); break;} case(7): { LOG("OTHER_SPEED_CONFIGURATION"); break;} case(8): { LOG("ON_the_GO"); break;} case(9): { LOG("DEBUG"); break;} case(10): { LOG("INTERFACE_ASSOCIATION"); break;} default: {LOG("?");} ; }//end switch data1; LOG("\n"); } //the descriptor for device: if(data[1]==1) { u16 *aux; aux=(u16*) &data[2]; LOG("bcdUSB\t %04x\t",*aux); switch( *aux) { case(0x0200): {LOG("v2.0"); break;} case(0x0110): {LOG("v1.1"); break;} case(0x0100): {LOG("v1.0"); break;} default: {LOG("?");} } LOG("\n"); } */ #endif int toggle = 0; if (endpoint->Address() == 0) toggle = (token == TOKEN_SETUP) ? TD_TOGGLE_0 : TD_TOGGLE_1; if (token != TOKEN_SETUP) token = (token == TOKEN_IN ? TD_IN : TD_OUT); HCTD* head = &endpoint->TDHead; HCTD* tail = &_commonTail; head->Control = TD_ROUNDING | token | TD_DELAY_INT(0) | toggle | TD_CC; head->CurrBufPtr = (u32)data; //..data is a pointer. head->BufEnd = (u32)(data + len - 1); //pointers arithmetic :S head->Next = (u32)tail; HCED* ed = &endpoint->EndpointDescriptor; ed->HeadTd = (u32)head | (ed->HeadTd & 0x00000002); // carry toggle ed->TailTd = (u32)tail; //HCTD* td = head; //LOG("%04X TD %08X %08X %08X Next:%08X\n",CommunicationArea.FrameNumber,td->Control,td->CurrBufPtr,td->BufEnd,td->Next); //LOG("%04X ED %08X %08X %08X\n",CommunicationArea.FrameNumber,ed->Control,ed->HeadTd,ed->TailTd); switch (endpoint->Flags & 3) { case ENDPOINT_CONTROL: LPC_USB->HcControlHeadED = endpoint->Enqueue(LPC_USB->HcControlHeadED); // May change state NotQueued->Idle endpoint->CurrentState = state; // Get in before an int LPC_USB->HcCommandStatus = LPC_USB->HcCommandStatus | ControlListFilled; LPC_USB->HcControl = LPC_USB->HcControl | ControlListEnable; break; case ENDPOINT_BULK: LPC_USB->HcBulkHeadED = endpoint->Enqueue(LPC_USB->HcBulkHeadED); endpoint->CurrentState = state; LPC_USB->HcCommandStatus = LPC_USB->HcCommandStatus | BulkListFilled; LPC_USB->HcControl = LPC_USB->HcControl | BulkListEnable; break; case ENDPOINT_INTERRUPT: CommunicationArea.InterruptTable[0] = endpoint->Enqueue(CommunicationArea.InterruptTable[0]); endpoint->CurrentState = state; LPC_USB->HcControl |= PeriodicListEnable; break; } return 0; }//end of transfer // Remove an endpoint from an active queue bool Remove(HCED* ed, volatile HCED** queue) { if (*queue == 0) return false; if (*queue == (volatile HCED*)ed) { *queue = (volatile HCED*)ed->Next; // At head of queue return true; } volatile HCED* head = *queue; while (head) { if (head->Next == (u32)ed) { head->Next = ed->Next; return true; } head = (volatile HCED*)head->Next; } return false; } void Release(Endpoint* endpoint) { if (endpoint->CurrentState == Endpoint::NotQueued) { // Never event used it, nothing to do } else { HCED* ed = (HCED*)endpoint; ed->Control |= 0x4000; // SKIP switch (endpoint->Flags & 0x03) { case ENDPOINT_CONTROL: Remove(ed,(volatile HCED**)&LPC_USB->HcControlHeadED); break; case ENDPOINT_BULK: Remove(ed,(volatile HCED**)&LPC_USB->HcBulkHeadED); break; case ENDPOINT_INTERRUPT: for (int i = 0; i < 32; i++) Remove(ed,(volatile HCED**)&CommunicationArea.InterruptTable[i]); break; } u16 fn = CommunicationArea.FrameNumber; while (fn == CommunicationArea.FrameNumber) ; // Wait for next frame } // In theory, the endpoint is now dead. // TODO: Will Callbacks ever be pending? BUGBUG memset(endpoint,0,sizeof(Endpoint)); } // Pop the last TD from the list HCTD* Reverse(HCTD* current) { HCTD *result = NULL,*temp; while (current) { temp = (HCTD*)current->Next; current->Next = (u32)result; result = current; current = temp; } return result; } // Called from interrupt... // Control endpoints use a state machine to progress through the transfers void ProcessDoneQueue(u32 tdList) { HCTD* list = Reverse((HCTD*)tdList); while (list) { Endpoint* endpoint = (Endpoint*)(list-1); list = (HCTD*)list->Next; int ep = endpoint->Address(); bool in = endpoint->Flags & 0x80; int status = (endpoint->TDHead.Control >> 28) & 0xF; //LOG("ProcessDoneQueue %02X %08X\n\n",ep,endpoint->TDHead.Control); if (status != 0) { //LOG("ProcessDoneQueue status %02X %d\n\n",ep,status); endpoint->CurrentState = Endpoint::Idle; } else { switch (endpoint->CurrentState) { case Endpoint::SetupQueued: if (endpoint->Length == 0) Transfer(endpoint,in ? TOKEN_OUT : TOKEN_IN,0,0,Endpoint::StatusQueued); // Skip Data Phase else Transfer(endpoint,in ? TOKEN_IN : TOKEN_OUT,endpoint->Data,endpoint->Length, Endpoint::DataQueued); // Setup is done, now Data break; case Endpoint::DataQueued: if (endpoint->TDHead.CurrBufPtr) endpoint->Length = endpoint->TDHead.CurrBufPtr - (u32)endpoint->Data; if (ep == 0) Transfer(endpoint,in ? TOKEN_OUT : TOKEN_IN,0,0,Endpoint::StatusQueued); // Data is done, now Status, Control only else endpoint->CurrentState = Endpoint::Idle; break; case Endpoint::StatusQueued: // Transaction is done endpoint->CurrentState = Endpoint::Idle; break; } } // Complete, flag if we need a callback if (endpoint->Callback && endpoint->CurrentState == Endpoint::Idle) { endpoint->CurrentState = Endpoint::CallbackPending; _callbacksPending++; } //LOG("End ProcessDoneQueue\n"); } } // Hack to reset devices that don't want to connect int AddDevice(int hub, int port, bool isLowSpeed) { int device = AddDeviceCore(hub,port,isLowSpeed); if (device < 0) { LOG("========RETRY ADD DEVICE========\n"); // This will go for ever.. TODO power cycle root? Disconnect(hub,port); // Could not read descriptor at assigned address, reset this port and try again ResetPort(hub,port); // Cheap bluetooth dongles often need this on a hotplug return -1; } return device; } int AddDeviceCore(int hub, int port, bool isLowSpeed) { int lowSpeed = isLowSpeed ? 0x2000 : 0; DeviceDescriptor desc; EndpointZero.EndpointDescriptor.Control = (8 << 16) | lowSpeed; // MaxPacketSize == 8 int r = GetDescriptor(0,DESCRIPTOR_TYPE_DEVICE,0,(u8*)&desc,8); if (r < 0) { LOG("FAILED TO LOAD DESCRIPTOR FOR DEVICE 0\n"); return r; } EndpointZero.EndpointDescriptor.Control = (desc.bMaxPacketSize << 16) | lowSpeed; // Actual MaxPacketSize r = GetDescriptor(0,DESCRIPTOR_TYPE_DEVICE,0,(u8*)&desc,sizeof(desc)); if (r < 0) return r; LOG("\nClass %02X found %04X:%04X\n\n",desc.bDeviceClass,desc.idVendor,desc.idProduct); // Now assign the device an address, move off EndpointZero int device = 0; for (int i = 0; i < MAX_DEVICES; i++) { if (Devices[i].Port == 0) { device = i+1; break; } } if (!device) return ERR_DEVICE_NONE_LEFT; r = SetAddress(0,device); if (r) return r; DelayMS(2); // Now at a nonzero address, create control endpoint Device* dev = &Devices[device-1]; dev->Init(&desc,hub,port,device,lowSpeed); AddEndpoint(device,0,ENDPOINT_CONTROL,desc.bMaxPacketSize,0); _connectPending = 0; // Verify this all works r = GetDescriptor(device,DESCRIPTOR_TYPE_DEVICE,0,(u8*)&desc,sizeof(desc)); if (r < 0) return r; // Set to interface 0 by default // Calls LoadDevice if interface is found r = SetConfigurationAndInterface(device,1,0,&desc); if (desc.bDeviceClass == CLASS_HUB) InitHub(device); // Handle hubs in this code return device; } // Walk descriptors and create endpoints for a given device // TODO configuration !=1, alternate settings etc. int SetConfigurationAndInterface(int device, int configuration, int interfaceNumber, DeviceDescriptor* desc) { LOG("SetConfiguration and Interface\n"); u8 buffer[255]; int err = GetDescriptor(device,DESCRIPTOR_TYPE_CONFIGURATION,0,buffer,sizeof(buffer)); if (err < 0) return err; err = SetConfiguration(device,configuration); if (err < 0) return err; // Add the endpoints for this interface int len = buffer[2] | (buffer[3] << 8); u8* d = buffer; u8* end = d + len; InterfaceDescriptor* found = 0; while (d < end) { if (d[1] == DESCRIPTOR_TYPE_INTERFACE) { InterfaceDescriptor* id = (InterfaceDescriptor*)d; if (id->bInterfaceNumber == interfaceNumber) { found = id; d += d[0]; while (d < end && d[1] != DESCRIPTOR_TYPE_INTERFACE) { switch (d[1]) { case DESCRIPTOR_TYPE_ENDPOINT: AddEndpoint(device,(EndpointDescriptor*)d); break; default: LOG("Skipping descriptor %02X (%d bytes)\n",d[1],d[0]); } d += d[0]; } } } d += d[0]; } if (!found) return ERR_INTERFACE_NOT_FOUND; OnLoadDevice(device,desc,found); return 0; } void Init() { LOG("USB INIT (Controller is %d bytes)\n",sizeof(*this)); memset(this,0,sizeof(HostController)); EndpointZero.CurrentState = Endpoint::NotQueued; HWInit(&CommunicationArea); DelayMS(10); } void ResetPort(int hub, int port) { LOG("ResetPort Hub:%d Port:%d\n",hub,port); _connectPending++; // Only reset/add 1 device at a time if (hub == 0) LPC_USB->HcRhPortStatus1 = PortResetStatus; // Reset Root Hub, port 1 else SetPortReset(hub,port); // or reset other hub } void Disconnect(int hub, int port) { LOG("Disconnect Hub:%d Port:%d\n",hub,port); // Mark a device for destruction _connectstate = 0; for (int i = 0; i < MAX_DEVICES; i++) { Device* dev = Devices + i; if (dev->Port == port && dev->Hub == hub) { // Disconnect everything that is attached to this device if it is a hub for (int p = 0; p < dev->HubPortCount; p++) Disconnect(i+1,p+1); // Now release endpoints for (int j = 1; j < MAX_ENDPOINTS_PER_DEVICE*2; j += 2) { u8 endpointIndex = dev->_endpointMap[j]; if (endpointIndex != 0xFF) Release(Endpoints + endpointIndex); } dev->Port = 0; // Device is now free dev->Flags = 0; return; } } } // called after reset int Connect(int hub, int port, bool lowspeed) { int device; LOG("Connect Hub:%d Port:%d %s\n\n",hub,port,lowspeed ? "slow-speed" : "full-speed"); device = AddDevice(hub,port,lowspeed); _connectstate = 1; return device; } // Called from interrupt void HubStatusChange(int hub, int port, u32 status) { LOG("HubStatusChange Hub:%d Port:%d %08X\n",hub,port,status); if (status & ConnectStatusChange) { if (status & CurrentConnectStatus) // Connecting ResetPort(hub,port); // Reset to initiate connect (state machine?) else Disconnect(hub,port); } if (status & PortResetStatusChange) { if (!(status & PortResetStatus)) { _connectCountdown = 200; // Schedule a connection in 200ms if (status & LowspeedDevice) port |= 0x80; _connectHub = hub; _connectPort = port; } } } #define HOST_CLK_EN (1<<0) #define PORTSEL_CLK_EN (1<<3) #define AHB_CLK_EN (1<<4) #define CLOCK_MASK (HOST_CLK_EN | PORTSEL_CLK_EN | AHB_CLK_EN) #define FRAMEINTERVAL (12000-1) // 1ms #define DEFAULT_FMINTERVAL ((((6 * (FRAMEINTERVAL - 210)) / 7) << 16) | FRAMEINTERVAL) void DelayMS(int ms) { u16 f = ms + CommunicationArea.FrameNumber; while (f != CommunicationArea.FrameNumber) ; } static void HWInit(HCCA* cca) { NVIC_DisableIRQ(USB_IRQn); //no interruptions // turn on power for USB LPC_SC->PCONP |= (1UL<<31); // Enable USB host clock, port selection and AHB clock LPC_USB->USBClkCtrl |= CLOCK_MASK; // Wait for clocks to become available while ((LPC_USB->USBClkSt & CLOCK_MASK) != CLOCK_MASK) ; // We are a Host LPC_USB->OTGStCtrl |= 1; LPC_USB->USBClkCtrl &= ~PORTSEL_CLK_EN; // we don't need port selection clock until we do OTG // configure USB pins LPC_PINCON->PINSEL1 &= ~((3<<26)|(3<<28)); LPC_PINCON->PINSEL1 |= ((1<<26)|(1<<28)); // USB D+/D- LPC_PINCON->PINSEL3 &= ~((3 << 6) | (3 << 22)); // USB_PPWR, USB_OVRCR LPC_PINCON->PINSEL3 |= ((2 << 6) | (2 << 22)); LPC_PINCON->PINSEL4 &= ~(3 << 18); // USB_CONNECT LPC_PINCON->PINSEL4 |= (1 << 18); // Reset OHCI block LPC_USB->HcControl = 0; //Defines the operating modes of the HC. LPC_USB->HcControlHeadED = 0; //Contains the physical address of the first endpoint //descriptor of the control list. LPC_USB->HcBulkHeadED = 0; //Contains the physical address of the first endpoint //descriptor of the bulk list. LPC_USB->HcCommandStatus = HostControllerReset; //This register is used to receive the commands from the //Host Controller Driver (HCD). It also indicates the status //of the HC. LPC_USB->HcFmInterval = DEFAULT_FMINTERVAL; LPC_USB->HcPeriodicStart = FRAMEINTERVAL*90/100; LPC_USB->HcControl = (LPC_USB->HcControl & (~HostControllerFunctionalState)) | OperationalMask; LPC_USB->HcRhStatus = SetGlobalPower; LPC_USB->HcHCCA = (u32)cca; //Contains the physical address of the host controller //communication area. LPC_USB->HcInterruptStatus |= LPC_USB->HcInterruptStatus; //Indicates the status on various events that cause //hardware interrupts by setting the appropriate bits. LPC_USB->HcInterruptEnable = MasterInterruptEnable | WritebackDoneHead | RootHubStatusChange | FrameNumberOverflow; NVIC_SetPriority(USB_IRQn, 0); //top-priority NVIC_EnableIRQ(USB_IRQn); //enable USB interruptions. LOG("\nHWini\n"); while (cca->FrameNumber < 10) ; // 10ms delay before diving in } }; //==================================================================================== //==================================================================================== // Host controller instance and Interrupt handler //static HostController _controller __attribute__((at(USB_RAM_BASE))); static __align(256) HostController _controller __attribute__((section ( "AHBSRAM1"))); extern "C" void USB_IRQHandler(void) __irq; void USB_IRQHandler (void) __irq { u32 int_status = LPC_USB->HcInterruptStatus; //Indicates the status on various events that cause //hardware interrupts by setting the appropriate bits. //LOG("[[USB_IRQHandler]]\n"); if (int_status & RootHubStatusChange) // Root hub status change _controller._rootHubStatusChange++; // Just flag the controller, will be processed in USBLoop u32 head = 0; if (int_status & WritebackDoneHead) { head = _controller.CommunicationArea.DoneHead; // Writeback Done _controller.CommunicationArea.DoneHead = 0; } LPC_USB->HcInterruptStatus = int_status; if (head) _controller.ProcessDoneQueue(head); // TODO - low bit can be set BUGBUG // LOG("[[USB_IRQHandler END]]\n"); } //==================================================================================== //==================================================================================== // API Methods void USBInit() { return _controller.Init(); } int USBLoop(int u_flag, u8* u_data) { return _controller.Loop(u_flag,u_data); } u8* USBGetBuffer(u32* len) { *len = USB_RAM_SIZE - sizeof(HostController); return _controller.SRAM; } static Setup* GetSetup(int device) { if (device == 0) return &_controller._setupZero; if (device < 1 || device > MAX_DEVICES) return 0; return &_controller.Devices[device-1].SetupBuffer; } // Loop until IO on endpoint is complete static int WaitIODone(Endpoint* endpoint) { int u_flag=0; u8 u_data[256]; if (endpoint->CurrentState == Endpoint::NotQueued) return 0; while (endpoint->CurrentState != Endpoint::Idle) USBLoop(u_flag,u_data); // May generate callbacks, mount or unmount devices etc int status = endpoint->Status(); if (status == 0) return endpoint->Length; return -status; } int USBTransfer(int device, int ep, u8 flags, u8* data, int length, USBCallback callback, void* userData) { Endpoint* endpoint = _controller.GetEndpoint(device,ep); if (!endpoint) return ERR_ENDPOINT_NOT_FOUND; WaitIODone(endpoint); endpoint->Flags = flags; endpoint->Data = data; endpoint->Length = length; endpoint->Callback = callback; endpoint->UserData = userData; if (ep == 0) _controller.Transfer(endpoint,TOKEN_SETUP,(u8*)GetSetup(device),8,Endpoint::SetupQueued); else _controller.Transfer(endpoint,flags & 0x80 ? TOKEN_IN : TOKEN_OUT,data,length,Endpoint::DataQueued); if (callback) return IO_PENDING; return WaitIODone(endpoint); } int USBControlTransfer(int device, int request_type, int request, int value, int index, u8* data, int length, USBCallback callback, void * userData) { Setup* setup = GetSetup(device); if (!setup) return ERR_DEVICE_NOT_FOUND; // Async control calls may overwrite setup buffer of previous call, so we need to wait before setting up next call WaitIODone(_controller.GetEndpoint(device,0)); setup->bm_request_type = request_type; setup->b_request = request; setup->w_value = value; setup->w_index = index; setup->w_length = length; /* #ifdef USBLOG LOG("USBControlTransfer\n"); LOG("bm_request_type\t %02x h", request_type); LOG( "\t %d%d%d%d%d%d%d%d b \t", (((request_type)&(128))>>7), (((request_type)&(64))>>6), ((request_type)&(32))>>5, ((request_type)&(16))>>4,((request_type)&(8))>>2,((request_type)&(4))>>1,((request_type)&(2) )>>1, (request_type)&(1) ); if( request_type &1) LOG(" -> device-to-host"); if(!( request_type & 1)) LOG(" -> host-to-device"); LOG("\n"); LOG("b_request\t %02x h ",request); */ /* USB2.0 specs: table 9.4: GET_STATUS 0 CLEAR_FEATURE 1 Reserved for future use 2 SET_FEATURE 3 Reserved for future use 4 SET_ADDRESS 5 GET_DESCRIPTOR 6 SET_DESCRIPTOR 7 GET_CONFIGURATION 8 SET_CONFIGURATION 9 GET_INTERFACE 10 SET_INTERFACE 11 SYNCH_FRAME 12 */ /* LOG("\t"); switch (request) { case (0) :{ LOG("GET_STATUS"); break; } case (1) :{ LOG("CLEAR_FEATURE"); break; } case (2) :{ LOG("reseved"); break; } case (3) :{ LOG("SET_FEATURE"); break; } case (6): { LOG("GET_DESCRIPTOR"); break; } case (5) :{ LOG("SET_ADDRESS"); break; } case (7): { LOG("SET_DESCRIPTOR"); break; } case (8) :{ LOG("GET_CONFIGURATION"); break; } case (9): { LOG("SET_CONFIGURATION"); break; } case (10): { LOG("GET_INTERFACE"); break; } case (11) :{ LOG("SET_INTERFACE"); break; } case (12): { LOG("SYNCH_FRAEM"); break; } }//end switch (reques) LOG("\n"); LOG("w_value \t %04x h\t ",value); */ /* Descriptor Types Value DEVICE 1 CONFIGURATION 2 STRING 3 INTERFACE 4 ENDPOINT 5 DEVICE_QUALIFIER 6 OTHER_SPEED_CONFIGURATION 7 INTERFACE_POWER1 8 */ u8* pv=(u8*)&value; pv=pv+1; /* switch (request) { case (GET_DESCRIPTOR): { switch (*pv) { case(1): { LOG(" -> DEVICE"); break; } case(2): { LOG(" -> CONFIGURATION"); break;} case(3): { LOG(" -> STRING"); break;} case( 4): { LOG(" -> INTERFACE"); break;} case(5): { LOG(" -> ENDPOINT"); break;} case( 6): { LOG(" -> DEVICE_QUALIFIER"); break;} case( 7): { LOG(" -> OTHER SPEED_CONFIGURATION"); break;} case (8) :{ LOG("SET_INTERFACE"); break; } default: {LOG("->%x",*pv);} ; }//end switch(value) break; }//end case 6 case(SET_ADDRESS): { LOG("<-this value is the new adress"); break; }//end case set address. default : { LOG("."); break; } } LOG("\n"); LOG("w_index = %04x h = %2d d \n",index, index); LOG("w_length = %04x h = %2d d ",length, length); if (request==6) LOG(" -> this should be the descriptor/answer length"); LOG("\n"); #endif */ return USBTransfer(device,0,request_type & DEVICE_TO_HOST,data,length,callback,userData); } int USBInterruptTransfer(int device, int ep, u8* data, int length, USBCallback callback, void* userData) { LOG("USBinterruptTransfer\n"); return USBTransfer(device,ep,(ep & 0x80) | ENDPOINT_INTERRUPT,data,length,callback,userData); } int USBBulkTransfer(int device, int ep, u8* data, int length, USBCallback callback, void* userData) { LOG("USBBulkTransfer\n"); return USBTransfer(device,ep,(ep & 0x80) | ENDPOINT_BULK,data,length,callback,userData); } int GetDescriptor(int device, int descType,int descIndex, u8* data, int length) { // LOG("[[device = %d]]\n",device); return USBControlTransfer(device,DEVICE_TO_HOST | RECIPIENT_DEVICE, GET_DESCRIPTOR,(descType << 8)|(descIndex), 0, data, length, 0); } int GetReport(int device, int descType,int descIndex, u8* data, int length) { return USBControlTransfer(device,0xA1, 0x01,(descType << 8)|(descIndex), 0, data, length, 0); } int GetString(int device, int index, char* dst, int length) { u8 buffer[255]; int le = GetDescriptor(device,DESCRIPTOR_TYPE_STRING,index,buffer,sizeof(buffer)); if (le < 0) return le; if (length < 1) return -1; length <<= 1; if (le > length) le = length; for (int j = 2; j < le; j += 2) *dst++ = buffer[j]; *dst = 0; return (le>>1)-1; } int SetAddress(int device, int new_addr) { return USBControlTransfer(device,HOST_TO_DEVICE | RECIPIENT_DEVICE, SET_ADDRESS, new_addr, 0, 0, 0, 0); } int SetConfiguration(int device, int configNum) { return USBControlTransfer(device,HOST_TO_DEVICE | RECIPIENT_DEVICE, SET_CONFIGURATION, configNum, 0, 0, 0, 0); } int SetInterface(int device, int ifNum, int altNum) { return USBControlTransfer(device,HOST_TO_DEVICE | RECIPIENT_INTERFACE, SET_INTERFACE, altNum, ifNum, 0, 0, 0); } int SetReport(int device) { //LOG("[[device = %d]]\n",device); return USBControlTransfer(device,0x80, 0x06, 0x0302, 0, 0, 255, 0); } // HUB stuff int SetPortFeature(int device, int feature, int index) { return USBControlTransfer(device,HOST_TO_DEVICE | REQUEST_TYPE_CLASS | RECIPIENT_OTHER,SET_FEATURE,feature,index,0,0); } int ClearPortFeature(int device, int feature, int index) { return USBControlTransfer(device,HOST_TO_DEVICE | REQUEST_TYPE_CLASS | RECIPIENT_OTHER,CLEAR_FEATURE,feature,index,0,0); } int SetPortPower(int device, int port) { int r = SetPortFeature(device,PORT_POWER,port); _controller.DelayMS(20); // 80ms to turn on a hubs power... DESCRIPTOR? todo return r; } int SetPortReset(int device, int port) { return SetPortFeature(device,PORT_RESET,port); } int GetPortStatus(int device, int port, u32* status) { return USBControlTransfer(device,DEVICE_TO_HOST | REQUEST_TYPE_CLASS | RECIPIENT_OTHER,GET_STATUS,0,port,(u8*)status,4); }