Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: FatFileSystem mbed
Fork of WAVEplayer by
Revision 0:4cda52c0c66e, committed 2010-01-02
- Comitter:
- Kerpower
- Date:
- Sat Jan 02 17:07:38 2010 +0000
- Child:
- 1:d80e2eee325a
- Commit message:
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/FATFileSystem.lib Sat Jan 02 17:07:38 2010 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_unsupported/code/fatfilesystem/ \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/SDFileSystem.cpp Sat Jan 02 17:07:38 2010 +0000
@@ -0,0 +1,300 @@
+/* mbed Microcontroller Library - SDFileSystem
+ * Copyright (c) 2008-2009, sford
+ *
+ * Introduction
+ * ------------
+ * SD and MMC cards support a number of interfaces, but common to them all
+ * is one based on SPI. This is the one I'm implmenting because it means
+ * it is much more portable even though not so performant, and we already
+ * have the mbed SPI Interface!
+ *
+ * The main reference I'm using is Chapter 7, "SPI Mode" of:
+ * http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
+ *
+ * SPI Startup
+ * -----------
+ * The SD card powers up in SD mode. The SPI interface mode is selected by
+ * asserting CS low and sending the reset command (CMD0). The card will
+ * respond with a (R1) response.
+ *
+ * CMD8 is optionally sent to determine the voltage range supported, and
+ * indirectly determine whether it is a version 1.x SD/non-SD card or
+ * version 2.x. I'll just ignore this for now.
+ *
+ * ACMD41 is repeatedly issued to initialise the card, until "in idle"
+ * (bit 0) of the R1 response goes to '0', indicating it is initialised.
+ *
+ * You should also indicate whether the host supports High Capicity cards,
+ * and check whether the card is high capacity - i'll also ignore this
+ *
+ * SPI Protocol
+ * ------------
+ * The SD SPI protocol is based on transactions made up of 8-bit words, with
+ * the host starting every bus transaction by asserting the CS signal low. The
+ * card always responds to commands, data blocks and errors.
+ *
+ * The protocol supports a CRC, but by default it is off (except for the
+ * first reset CMD0, where the CRC can just be pre-calculated, and CMD8)
+ * I'll leave the CRC off I think!
+ *
+ * Standard capacity cards have variable data block sizes, whereas High
+ * Capacity cards fix the size of data block to 512 bytes. I'll therefore
+ * just always use the Standard Capacity cards with a block size of 512 bytes.
+ * This is set with CMD16.
+ *
+ * You can read and write single blocks (CMD17, CMD25) or multiple blocks
+ * (CMD18, CMD25). For simplicity, I'll just use single block accesses. When
+ * the card gets a read command, it responds with a response token, and then
+ * a data token or an error.
+ *
+ * SPI Command Format
+ * ------------------
+ * Commands are 6-bytes long, containing the command, 32-bit argument, and CRC.
+ *
+ * +---------------+------------+------------+-----------+----------+--------------+
+ * | 01 | cmd[5:0] | arg[31:24] | arg[23:16] | arg[15:8] | arg[7:0] | crc[6:0] | 1 |
+ * +---------------+------------+------------+-----------+----------+--------------+
+ *
+ * As I'm not using CRC, I can fix that byte to what is needed for CMD0 (0x95)
+ *
+ * All Application Specific commands shall be preceded with APP_CMD (CMD55).
+ *
+ * SPI Response Format
+ * -------------------
+ * The main response format (R1) is a status byte (normally zero). Key flags:
+ * idle - 1 if the card is in an idle state/initialising
+ * cmd - 1 if an illegal command code was detected
+ *
+ * +-------------------------------------------------+
+ * R1 | 0 | arg | addr | seq | crc | cmd | erase | idle |
+ * +-------------------------------------------------+
+ *
+ * R1b is the same, except it is followed by a busy signal (zeros) until
+ * the first non-zero byte when it is ready again.
+ *
+ * Data Response Token
+ * -------------------
+ * Every data block written to the card is acknowledged by a byte
+ * response token
+ *
+ * +----------------------+
+ * | xxx | 0 | status | 1 |
+ * +----------------------+
+ * 010 - OK!
+ * 101 - CRC Error
+ * 110 - Write Error
+ *
+ * Single Block Read and Write
+ * ---------------------------
+ *
+ * Block transfers have a byte header, followed by the data, followed
+ * by a 16-bit CRC. In our case, the data will always be 512 bytes.
+ *
+ * +------+---------+---------+- - - -+---------+-----------+----------+
+ * | 0xFE | data[0] | data[1] | | data[n] | crc[15:8] | crc[7:0] |
+ * +------+---------+---------+- - - -+---------+-----------+----------+
+ */
+
+#include "SDFileSystem.h"
+
+#define SD_COMMAND_TIMEOUT 5000
+
+SDFileSystem::SDFileSystem(PinName mosi, PinName miso, PinName sclk, PinName cs, const char* name) :
+ FATFileSystem(name), _spi(mosi, miso, sclk), _cs(cs) {
+ _cs = 1;
+}
+
+int SDFileSystem::disk_initialize() {
+
+ _spi.frequency(100000); // Set to 100kHz for initialisation
+
+ // Initialise the card by clocking it with cs = 1
+ _cs = 1;
+ for(int i=0; i<16; i++) {
+ _spi.write(0xFF);
+ }
+
+ // send CMD0, should return with all zeros except IDLE STATE set (bit 0)
+ if(_cmd(0, 0) != 0x01) {
+ fprintf(stderr, "Not in idle state\n");
+ return 1;
+ }
+
+ // ACMD41 to give host capacity support (repeat until not busy)
+ // ACMD41 is application specific command, so we send APP_CMD (CMD55) beforehand
+ for(int i=0;; i++) {
+ _cmd(55, 0);
+ int response = _cmd(41, 0);
+ if(response == 0) {
+ break;
+ } else if(i > SD_COMMAND_TIMEOUT) {
+ fprintf(stderr, "Timeout waiting for card\n");
+ return 1;
+ }
+ }
+
+ _sectors = _sd_sectors();
+
+ // Set block length to 512 (CMD16)
+ if(_cmd(16, 512) != 0) {
+ fprintf(stderr, "Set block timeout\n");
+ return 1;
+ }
+
+ _spi.frequency(1000000); // Set to 1MHz for data transfer
+ return 0;
+}
+
+int SDFileSystem::disk_write(const char *buffer, int block_number) {
+ // set write address for single block (CMD24)
+ if(_cmd(24, block_number * 512) != 0) {
+ return 1;
+ }
+
+ // send the data block
+ _write(buffer, 512);
+ return 0;
+}
+
+int SDFileSystem::disk_read(char *buffer, int block_number) {
+ // set read address for single block (CMD17)
+ if(_cmd(17, block_number * 512) != 0) {
+ return 1;
+ }
+
+ // receive the data
+ _read(buffer, 512);
+ return 0;
+}
+
+int SDFileSystem::disk_status() { return 0; }
+int SDFileSystem::disk_sync() { return 0; }
+int SDFileSystem::disk_sectors() { return _sectors; }
+
+// PRIVATE FUNCTIONS
+
+int SDFileSystem::_cmd(int cmd, int arg) {
+ _cs = 0;
+
+ // send a command
+ _spi.write(0x40 | cmd);
+ _spi.write(arg >> 24);
+ _spi.write(arg >> 16);
+ _spi.write(arg >> 8);
+ _spi.write(arg >> 0);
+ _spi.write(0x95);
+
+ // wait for the repsonse (response[7] == 0)
+ for(int i=0; i<SD_COMMAND_TIMEOUT; i++) {
+ int response = _spi.write(0xFF);
+ if(!(response & 0x80)) {
+ _cs = 1;
+ _spi.write(0xFF);
+ return response;
+ }
+ }
+ _cs = 1;
+ _spi.write(0xFF);
+ return -1; // timeout
+}
+
+int SDFileSystem::_read(char *buffer, int length) {
+ _cs = 0;
+
+ // read until start byte (0xFF)
+ while(_spi.write(0xFF) != 0xFE);
+
+ // read data
+ for(int i=0; i<length; i++) {
+ buffer[i] = _spi.write(0xFF);
+ }
+ _spi.write(0xFF); // checksum
+ _spi.write(0xFF);
+
+ _cs = 1;
+ _spi.write(0xFF);
+ return 0;
+}
+
+int SDFileSystem::_write(const char *buffer, int length) {
+ _cs = 0;
+
+ // indicate start of block
+ _spi.write(0xFE);
+
+ // write the data
+ for(int i=0; i<length; i++) {
+ _spi.write(buffer[i]);
+ }
+
+ // write the checksum
+ _spi.write(0xFF);
+ _spi.write(0xFF);
+
+ // check the repsonse token
+ if((_spi.write(0xFF) & 0x1F) != 0x05) {
+ _cs = 1;
+ _spi.write(0xFF);
+ return 1;
+ }
+
+ // wait for write to finish
+ while(_spi.write(0xFF) == 0);
+
+ _cs = 1;
+ _spi.write(0xFF);
+ return 0;
+}
+
+static int ext_bits(char *data, int msb, int lsb) {
+ int bits = 0;
+ int size = 1 + msb - lsb;
+ for(int i=0; i<size; i++) {
+ int position = lsb + i;
+ int byte = 15 - (position >> 3);
+ int bit = position & 0x7;
+ int value = (data[byte] >> bit) & 1;
+ bits |= value << i;
+ }
+ return bits;
+}
+
+int SDFileSystem::_sd_sectors() {
+
+ // CMD9, Response R2 (R1 byte + 16-byte block read)
+ if(_cmd(9, 0) != 0) {
+ fprintf(stderr, "Didn't get a response from the disk\n");
+ return 0;
+ }
+
+ char csd[16];
+ if(_read(csd, 16) != 0) {
+ fprintf(stderr, "Couldn't read csd response from disk\n");
+ return 0;
+ }
+
+ // csd_structure : csd[127:126]
+ // c_size : csd[73:62]
+ // c_size_mult : csd[49:47]
+ // read_bl_len : csd[83:80]
+
+ int csd_structure = ext_bits(csd, 127, 126);
+ int c_size = ext_bits(csd, 73, 62);
+ int c_size_mult = ext_bits(csd, 49, 47);
+ int read_bl_len = ext_bits(csd, 83, 80);
+
+ if(csd_structure != 0) {
+ fprintf(stderr, "This disk tastes funny! I only know about type 0 CSD structures");
+ return 0;
+ }
+
+ int blocks = (c_size + 1) * (1 << (c_size_mult + 2));
+ int block_size = 1 << read_bl_len;
+
+ if(block_size != 512) {
+ fprintf(stderr, "This disk tastes funny! I only like 512-byte blocks");
+ return 0;
+ }
+
+ return blocks;
+}
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/SDFileSystem.h Sat Jan 02 17:07:38 2010 +0000
@@ -0,0 +1,56 @@
+/* mbed Microcontroller Library - SDFileSystem
+ * Copyright (c) 2008-2009, sford
+ */
+
+#ifndef SDFILESYSTEM_H
+#define SDFILESYSTEM_H
+
+#include "mbed.h"
+#include "FATFileSystem.h"
+
+/* Class: SDFileSystem
+ * Access the filesystem on an SD Card using SPI
+ *
+ * Example:
+ * > SDFileSystem sd(p5, p6, p7, p12, "sd");
+ * >
+ * > int main() {
+ * > FILE *fp = fopen("/sd/myfile.txt", "w");
+ * > fprintf(fp, "Hello World!\n");
+ * > fclose(fp);
+ * > }
+ */
+class SDFileSystem : public FATFileSystem {
+public:
+
+ /* Constructor: SDFileSystem
+ * Create the File System for accessing an SD Card using SPI
+ *
+ * Variables:
+ * mosi - SPI mosi pin connected to SD Card
+ * miso - SPI miso pin conencted to SD Card
+ * sclk - SPI sclk pin connected to SD Card
+ * cs - DigitalOut pin used as SD Card chip select
+ * name - The name used to access the filesystem
+ */
+ SDFileSystem(PinName mosi, PinName miso, PinName sclk, PinName cs, const char* name);
+ virtual int disk_initialize();
+ virtual int disk_write(const char *buffer, int block_number);
+ virtual int disk_read(char *buffer, int block_number);
+ virtual int disk_status();
+ virtual int disk_sync();
+ virtual int disk_sectors();
+
+protected:
+
+ int _cmd(int cmd, int arg);
+ int _read(char *buffer, int length);
+ int _write(const char *buffer, int length);
+ int _sd_sectors();
+ int _sectors;
+
+ SPI _spi;
+ DigitalOut _cs;
+};
+
+#endif
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp Sat Jan 02 17:07:38 2010 +0000
@@ -0,0 +1,190 @@
+#include "mbed.h"
+#include "SDFileSystem.h"
+
+AnalogOut DACout(p18);
+DigitalOut led1(LED1);
+DigitalOut led2(LED2);
+DigitalOut led3(LED3);
+DigitalOut led4(p8);
+DigitalOut digout(LED4);
+Ticker tick;
+SDFileSystem sd(p11, p12, p13, p14, "sd");
+
+#define SAMPLE_FREQ 40000
+#define BUF_SIZE (SAMPLE_FREQ/10)
+#define SLICE_BUF_SIZE 1
+
+void dac_out(void);
+void play_wave(char *);
+void cleanup(char *);
+void fill_adc_buf(short *, unsigned);
+void swapword(unsigned *);
+
+// a FIFO for the DAC
+short DAC_fifo[256];
+short DAC_wptr;
+short DAC_rptr;
+short DAC_on;
+
+typedef struct uFMT_STRUCT {
+ short comp_code;
+ short num_channels;
+ unsigned sample_rate;
+ unsigned avg_Bps;
+ short block_align;
+ short sig_bps;
+} FMT_STRUCT;
+
+
+int main() {
+ led1=0; wait(.5); led1=1; wait(.5); led1=0;
+ printf("Hello, world!\n");
+ play_wave("/sd/baddonut.wav");
+ printf("Back from play_wave()\n");
+ play_wave("/sd/clint16.wav");
+ printf("Back from play_wave()\n");
+ printf("Goodbye, world!\n");
+ led1=1; wait(.5); led1=0; wait(.5); led1=1;
+}
+
+void play_wave(char *wavname)
+{
+ unsigned chunk_id,chunk_size,channel;
+// unsigned *data_wptr,data,samp_int,i;
+ unsigned data,samp_int,i;
+ short dac_data;
+ char *slice_buf;
+ short *data_sptr;
+// char *data_bptr;
+ FMT_STRUCT wav_format;
+ FILE *wavfile;
+ long slice,num_slices;
+ DAC_wptr=0;
+ DAC_rptr=0;
+ for (i=0;i<256;i+=2) {
+ DAC_fifo[i]=0;
+ DAC_fifo[i+1]=3000;
+ }
+ DAC_wptr=4;
+ DAC_on=0;
+
+ led1=led2=led3=led4=0;
+
+ printf("Playing wave file '%s'\n",wavname);
+
+ wavfile=fopen(wavname,"rb");
+ if (!wavfile) {
+ printf("Unable to open wav file '%s'\n",wavname);
+ exit(1);
+ }
+
+ fread(&chunk_id,4,1,wavfile);
+ fread(&chunk_size,4,1,wavfile);
+ while (!feof(wavfile)) {
+ printf("Read chunk ID 0x%x, size 0x%x\n",chunk_id,chunk_size);
+ switch (chunk_id) {
+ case 0x46464952:
+ fread(&data,4,1,wavfile);
+ printf("RIFF chunk\n");
+ printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size);
+ printf(" RIFF type 0x%x\n",data);
+ break;
+ case 0x20746d66:
+ fread(&wav_format,sizeof(wav_format),1,wavfile);
+ printf("FORMAT chunk\n");
+ printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size);
+ printf(" compression code %d\n",wav_format.comp_code);
+ printf(" %d channels\n",wav_format.num_channels);
+ printf(" %d samples/sec\n",wav_format.sample_rate);
+ printf(" %d bytes/sec\n",wav_format.avg_Bps);
+ printf(" block align %d\n",wav_format.block_align);
+ printf(" %d bits per sample\n",wav_format.sig_bps);
+ if (chunk_size > sizeof(wav_format))
+ fseek(wavfile,chunk_size-sizeof(wav_format),SEEK_CUR);
+// create a slice buffer large enough to hold multiple slices
+ slice_buf=(char *)malloc(wav_format.block_align*SLICE_BUF_SIZE);
+ if (!slice_buf) {
+ printf("Unable to malloc slice buffer");
+ exit(1);
+ }
+ break;
+ case 0x61746164:
+ slice_buf=(char *)malloc(wav_format.block_align*SLICE_BUF_SIZE);
+ if (!slice_buf) {
+ printf("Unable to malloc slice buffer");
+ exit(1);
+ } num_slices=chunk_size/wav_format.block_align;
+ printf("DATA chunk\n");
+ printf(" chunk size %d (0x%x)\n",chunk_size,chunk_size);
+ printf(" %d slices\n",num_slices);
+ printf(" Ideal sample interval=%d\n",(unsigned)(1000000.0/wav_format.sample_rate));
+ samp_int=1000000/(wav_format.sample_rate);
+ printf(" programmed interrupt tick interval=%d\n",samp_int);
+
+// starting up ticker to write samples out -- no printfs until tick.detach is called
+ tick.attach_us(&dac_out, samp_int);
+ DAC_on=1;
+ led2=1;
+ for (slice=0;slice<num_slices;slice+=SLICE_BUF_SIZE) {
+ fread(slice_buf,wav_format.block_align*SLICE_BUF_SIZE,1,wavfile);
+ if (feof(wavfile)) {
+ printf("Oops -- not enough slices in the wave file\n");
+ exit(1);
+ }
+ data_sptr=(short *)slice_buf;
+ for (i=0;i<SLICE_BUF_SIZE;i++) {
+ dac_data=0;
+
+// for a stereo wave file average the two channels.
+ for (channel=0;channel<wav_format.num_channels;channel++) {
+ switch (wav_format.sig_bps) {
+ case 16:
+ dac_data+=( ((int)(*data_sptr++)) +32768)>>5;
+ break;
+ }
+ }
+ dac_data>>=1;
+ DAC_fifo[DAC_wptr]=dac_data;
+ DAC_wptr=(DAC_wptr+1) & 0xff;
+ while (DAC_wptr==DAC_rptr) {
+ led1=1;
+ }
+ led1=0;
+ }
+ }
+ DAC_on=0;
+ led2=0;
+ tick.detach();
+ printf("Ticker detached\n");
+ led3=1;
+ free(slice_buf);
+ break;
+ case 0x5453494c:
+ printf("INFO chunk, size %d\n",chunk_size);
+ fseek(wavfile,chunk_size,SEEK_CUR);
+ break;
+ default:
+ printf("unknown chunk type 0x%x, size %d\n",chunk_id,chunk_size);
+ data=fseek(wavfile,chunk_size,SEEK_CUR);
+ break;
+ }
+ fread(&chunk_id,4,1,wavfile);
+ fread(&chunk_size,4,1,wavfile);
+ }
+ printf("Done with wave file\n");
+ fclose(wavfile);
+ led1=0;
+}
+
+
+void dac_out()
+{
+ if (DAC_on) {
+ digout=1;
+ DACout.write_u16(DAC_fifo[DAC_rptr]);
+ DAC_rptr=(DAC_rptr+1) & 0xff;
+ digout=0;
+ }
+}
+
+
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed.bld Sat Jan 02 17:07:38 2010 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_official/code/mbed/builds/49a220cc26e0
