Nicolas Borla
/
BBR_1Ebene
BBR 1 Ebene
mbed-os/rtos/Thread.cpp
- Committer:
- borlanic
- Date:
- 2018-05-14
- Revision:
- 0:fbdae7e6d805
File content as of revision 0:fbdae7e6d805:
/* mbed Microcontroller Library * Copyright (c) 2006-2012 ARM Limited * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "rtos/Thread.h" #include "mbed.h" #include "rtos/rtos_idle.h" #include "mbed_assert.h" #define ALIGN_UP(pos, align) ((pos) % (align) ? (pos) + ((align) - (pos) % (align)) : (pos)) MBED_STATIC_ASSERT(ALIGN_UP(0, 8) == 0, "ALIGN_UP macro error"); MBED_STATIC_ASSERT(ALIGN_UP(1, 8) == 8, "ALIGN_UP macro error"); #define ALIGN_DOWN(pos, align) ((pos) - ((pos) % (align))) MBED_STATIC_ASSERT(ALIGN_DOWN(7, 8) == 0, "ALIGN_DOWN macro error"); MBED_STATIC_ASSERT(ALIGN_DOWN(8, 8) == 8, "ALIGN_DOWN macro error"); static void (*terminate_hook)(osThreadId_t id) = 0; extern "C" void thread_terminate_hook(osThreadId_t id) { if (terminate_hook != (void (*)(osThreadId_t))NULL) { terminate_hook(id); } } namespace rtos { #ifndef MBED_TZ_DEFAULT_ACCESS #define MBED_TZ_DEFAULT_ACCESS 0 #endif void Thread::constructor(uint32_t tz_module, osPriority priority, uint32_t stack_size, unsigned char *stack_mem, const char *name) { const uintptr_t unaligned_mem = reinterpret_cast<uintptr_t>(stack_mem); const uintptr_t aligned_mem = ALIGN_UP(unaligned_mem, 8); const uint32_t offset = aligned_mem - unaligned_mem; const uint32_t aligned_size = ALIGN_DOWN(stack_size - offset, 8); _tid = 0; _dynamic_stack = (stack_mem == NULL); _finished = false; memset(&_obj_mem, 0, sizeof(_obj_mem)); memset(&_attr, 0, sizeof(_attr)); _attr.priority = priority; _attr.stack_size = aligned_size; _attr.name = name ? name : "application_unnamed_thread"; _attr.stack_mem = reinterpret_cast<uint32_t*>(aligned_mem); _attr.tz_module = tz_module; } void Thread::constructor(osPriority priority, uint32_t stack_size, unsigned char *stack_mem, const char *name) { constructor(MBED_TZ_DEFAULT_ACCESS, priority, stack_size, stack_mem, name); } void Thread::constructor(Callback<void()> task, osPriority priority, uint32_t stack_size, unsigned char *stack_mem, const char *name) { constructor(MBED_TZ_DEFAULT_ACCESS, priority, stack_size, stack_mem, name); switch (start(task)) { case osErrorResource: error("OS ran out of threads!\n"); break; case osErrorParameter: error("Thread already running!\n"); break; case osErrorNoMemory: error("Error allocating the stack memory\n"); default: break; } } osStatus Thread::start(Callback<void()> task) { _mutex.lock(); if ((_tid != 0) || _finished) { _mutex.unlock(); return osErrorParameter; } if (_attr.stack_mem == NULL) { _attr.stack_mem = new uint32_t[_attr.stack_size/sizeof(uint32_t)]; MBED_ASSERT(_attr.stack_mem != NULL); } //Fill the stack with a magic word for maximum usage checking for (uint32_t i = 0; i < (_attr.stack_size / sizeof(uint32_t)); i++) { ((uint32_t *)_attr.stack_mem)[i] = 0xE25A2EA5; } memset(&_obj_mem, 0, sizeof(_obj_mem)); _attr.cb_size = sizeof(_obj_mem); _attr.cb_mem = &_obj_mem; _task = task; _tid = osThreadNew(Thread::_thunk, this, &_attr); if (_tid == NULL) { if (_dynamic_stack) { delete[] (uint32_t *)(_attr.stack_mem); _attr.stack_mem = (uint32_t*)NULL; } _mutex.unlock(); _join_sem.release(); return osErrorResource; } _mutex.unlock(); return osOK; } osStatus Thread::terminate() { osStatus_t ret = osOK; _mutex.lock(); // Set the Thread's tid to NULL and // release the semaphore before terminating // since this thread could be terminating itself osThreadId_t local_id = _tid; _join_sem.release(); _tid = (osThreadId_t)NULL; if (!_finished) { _finished = true; // if local_id == 0 Thread was not started in first place // and does not have to be terminated if (local_id != 0) { ret = osThreadTerminate(local_id); } } _mutex.unlock(); return ret; } osStatus Thread::join() { int32_t ret = _join_sem.wait(); if (ret < 0) { return osError; } // The semaphore has been released so this thread is being // terminated or has been terminated. Once the mutex has // been locked it is ensured that the thread is deleted. _mutex.lock(); MBED_ASSERT(NULL == _tid); _mutex.unlock(); // Release sem so any other threads joining this thread wake up _join_sem.release(); return osOK; } osStatus Thread::set_priority(osPriority priority) { osStatus_t ret; _mutex.lock(); ret = osThreadSetPriority(_tid, priority); _mutex.unlock(); return ret; } osPriority Thread::get_priority() { osPriority_t ret; _mutex.lock(); ret = osThreadGetPriority(_tid); _mutex.unlock(); return ret; } int32_t Thread::signal_set(int32_t flags) { return osThreadFlagsSet(_tid, flags); } Thread::State Thread::get_state() { uint8_t state = osThreadTerminated; _mutex.lock(); if (_tid != NULL) { #if defined(MBED_OS_BACKEND_RTX5) state = _obj_mem.state; #else state = osThreadGetState(_tid); #endif } _mutex.unlock(); State user_state; switch(state) { case osThreadInactive: user_state = Inactive; break; case osThreadReady: user_state = Ready; break; case osThreadRunning: user_state = Running; break; #if defined(MBED_OS_BACKEND_RTX5) case osRtxThreadWaitingDelay: user_state = WaitingDelay; break; case osRtxThreadWaitingJoin: user_state = WaitingJoin; break; case osRtxThreadWaitingThreadFlags: user_state = WaitingThreadFlag; break; case osRtxThreadWaitingEventFlags: user_state = WaitingEventFlag; break; case osRtxThreadWaitingMutex: user_state = WaitingMutex; break; case osRtxThreadWaitingSemaphore: user_state = WaitingSemaphore; break; case osRtxThreadWaitingMemoryPool: user_state = WaitingMemoryPool; break; case osRtxThreadWaitingMessageGet: user_state = WaitingMessageGet; break; case osRtxThreadWaitingMessagePut: user_state = WaitingMessagePut; break; #endif case osThreadTerminated: default: user_state = Deleted; break; } return user_state; } uint32_t Thread::stack_size() { uint32_t size = 0; _mutex.lock(); if (_tid != NULL) { size = osThreadGetStackSize(_tid); } _mutex.unlock(); return size; } uint32_t Thread::free_stack() { uint32_t size = 0; _mutex.lock(); #if defined(MBED_OS_BACKEND_RTX5) if (_tid != NULL) { os_thread_t *thread = (os_thread_t *)_tid; size = (uint32_t)thread->sp - (uint32_t)thread->stack_mem; } #endif _mutex.unlock(); return size; } uint32_t Thread::used_stack() { uint32_t size = 0; _mutex.lock(); #if defined(MBED_OS_BACKEND_RTX5) if (_tid != NULL) { os_thread_t *thread = (os_thread_t *)_tid; size = ((uint32_t)thread->stack_mem + thread->stack_size) - thread->sp; } #endif _mutex.unlock(); return size; } uint32_t Thread::max_stack() { uint32_t size = 0; _mutex.lock(); if (_tid != NULL) { #if defined(MBED_OS_BACKEND_RTX5) os_thread_t *thread = (os_thread_t *)_tid; uint32_t high_mark = 0; while (((uint32_t *)(thread->stack_mem))[high_mark] == 0xE25A2EA5) high_mark++; size = thread->stack_size - (high_mark * sizeof(uint32_t)); #else size = osThreadGetStackSize(_tid) - osThreadGetStackSpace(_tid); #endif } _mutex.unlock(); return size; } const char *Thread::get_name() { return _attr.name; } int32_t Thread::signal_clr(int32_t flags) { return osThreadFlagsClear(flags); } osEvent Thread::signal_wait(int32_t signals, uint32_t millisec) { uint32_t res; osEvent evt; uint32_t options = osFlagsWaitAll; if (signals == 0) { options = osFlagsWaitAny; signals = 0x7FFFFFFF; } res = osThreadFlagsWait(signals, options, millisec); if (res & osFlagsError) { switch (res) { case osFlagsErrorISR: evt.status = osErrorISR; break; case osFlagsErrorResource: evt.status = osOK; break; case osFlagsErrorTimeout: evt.status = (osStatus)osEventTimeout; break; case osFlagsErrorParameter: default: evt.status = (osStatus)osErrorValue; break; } } else { evt.status = (osStatus)osEventSignal; evt.value.signals = res; } return evt; } osStatus Thread::wait(uint32_t millisec) { return osDelay(millisec); } osStatus Thread::wait_until(uint64_t millisec) { // CMSIS-RTOS 2.1.0 and 2.1.1 differ in the time type, which we determine // by looking at the return type of osKernelGetTickCount. We assume // our header at least matches the implementation, so we don't try looking // at the run-time version report. (There's no compile-time version report) if (sizeof osKernelGetTickCount() == sizeof(uint64_t)) { // CMSIS-RTOS 2.1.0 has a 64-bit API. The corresponding RTX 5.2.0 can't // delay more than 0xfffffffe ticks, but there's no limit stated for // the generic API. return osDelayUntil(millisec); } else { // 64-bit time doesn't wrap (for half a billion years, at last) uint64_t now = Kernel::get_ms_count(); // Report being late on entry if (now >= millisec) { return osErrorParameter; } // We're about to make a 32-bit delay call, so have at least this limit if (millisec - now > 0xFFFFFFFF) { return osErrorParameter; } // And this may have its own internal limit - we'll find out. // We hope/assume there's no problem with passing // osWaitForever = 0xFFFFFFFF - that value is only specified to have // special meaning for osSomethingWait calls. return osDelay(millisec - now); } } osStatus Thread::yield() { return osThreadYield(); } osThreadId Thread::gettid() { return osThreadGetId(); } void Thread::attach_idle_hook(void (*fptr)(void)) { rtos_attach_idle_hook(fptr); } void Thread::attach_terminate_hook(void (*fptr)(osThreadId_t id)) { terminate_hook = fptr; } Thread::~Thread() { // terminate is thread safe terminate(); if (_dynamic_stack) { delete[] (uint32_t*)(_attr.stack_mem); _attr.stack_mem = (uint32_t*)NULL; } } void Thread::_thunk(void * thread_ptr) { Thread *t = (Thread*)thread_ptr; t->_task(); t->_mutex.lock(); t->_tid = (osThreadId)NULL; t->_finished = true; t->_join_sem.release(); // rtos will release the mutex automatically } }