BBR 1 Ebene

mbed-os/rtos/Thread.cpp

Committer:
borlanic
Date:
2018-05-14
Revision:
0:fbdae7e6d805

File content as of revision 0:fbdae7e6d805:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2012 ARM Limited
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "rtos/Thread.h"

#include "mbed.h"
#include "rtos/rtos_idle.h"
#include "mbed_assert.h"

#define ALIGN_UP(pos, align) ((pos) % (align) ? (pos) +  ((align) - (pos) % (align)) : (pos))
MBED_STATIC_ASSERT(ALIGN_UP(0, 8) == 0, "ALIGN_UP macro error");
MBED_STATIC_ASSERT(ALIGN_UP(1, 8) == 8, "ALIGN_UP macro error");

#define ALIGN_DOWN(pos, align) ((pos) - ((pos) % (align)))
MBED_STATIC_ASSERT(ALIGN_DOWN(7, 8) == 0, "ALIGN_DOWN macro error");
MBED_STATIC_ASSERT(ALIGN_DOWN(8, 8) == 8, "ALIGN_DOWN macro error");

static void (*terminate_hook)(osThreadId_t id) = 0;
extern "C" void thread_terminate_hook(osThreadId_t id)
{
    if (terminate_hook != (void (*)(osThreadId_t))NULL) {
        terminate_hook(id);
    }
}

namespace rtos {

#ifndef MBED_TZ_DEFAULT_ACCESS
#define MBED_TZ_DEFAULT_ACCESS   0
#endif

void Thread::constructor(uint32_t tz_module, osPriority priority,
        uint32_t stack_size, unsigned char *stack_mem, const char *name) {

    const uintptr_t unaligned_mem = reinterpret_cast<uintptr_t>(stack_mem);
    const uintptr_t aligned_mem = ALIGN_UP(unaligned_mem, 8);
    const uint32_t offset = aligned_mem - unaligned_mem;
    const uint32_t aligned_size = ALIGN_DOWN(stack_size - offset, 8);

    _tid = 0;
    _dynamic_stack = (stack_mem == NULL);
    _finished = false;
    memset(&_obj_mem, 0, sizeof(_obj_mem));
    memset(&_attr, 0, sizeof(_attr));
    _attr.priority = priority;
    _attr.stack_size = aligned_size;
    _attr.name = name ? name : "application_unnamed_thread";
    _attr.stack_mem = reinterpret_cast<uint32_t*>(aligned_mem);
    _attr.tz_module = tz_module;
}

void Thread::constructor(osPriority priority,
        uint32_t stack_size, unsigned char *stack_mem, const char *name) {
    constructor(MBED_TZ_DEFAULT_ACCESS, priority, stack_size, stack_mem, name);
}

void Thread::constructor(Callback<void()> task,
        osPriority priority, uint32_t stack_size, unsigned char *stack_mem, const char *name) {
    constructor(MBED_TZ_DEFAULT_ACCESS, priority, stack_size, stack_mem, name);

    switch (start(task)) {
        case osErrorResource:
            error("OS ran out of threads!\n");
            break;
        case osErrorParameter:
            error("Thread already running!\n");
            break;
        case osErrorNoMemory:
            error("Error allocating the stack memory\n");
        default:
            break;
    }
}

osStatus Thread::start(Callback<void()> task) {
    _mutex.lock();

    if ((_tid != 0) || _finished) {
        _mutex.unlock();
        return osErrorParameter;
    }

    if (_attr.stack_mem == NULL) {
        _attr.stack_mem = new uint32_t[_attr.stack_size/sizeof(uint32_t)];
        MBED_ASSERT(_attr.stack_mem != NULL);
    }

    //Fill the stack with a magic word for maximum usage checking
    for (uint32_t i = 0; i < (_attr.stack_size / sizeof(uint32_t)); i++) {
        ((uint32_t *)_attr.stack_mem)[i] = 0xE25A2EA5;
    }

    memset(&_obj_mem, 0, sizeof(_obj_mem));
    _attr.cb_size = sizeof(_obj_mem);
    _attr.cb_mem = &_obj_mem;
    _task = task;
    _tid = osThreadNew(Thread::_thunk, this, &_attr);
    if (_tid == NULL) {
        if (_dynamic_stack) {
            delete[] (uint32_t *)(_attr.stack_mem);
            _attr.stack_mem = (uint32_t*)NULL;
        }
        _mutex.unlock();
        _join_sem.release();
        return osErrorResource;
    }

    _mutex.unlock();
    return osOK;
}

osStatus Thread::terminate() {
    osStatus_t ret = osOK;
    _mutex.lock();

    // Set the Thread's tid to NULL and
    // release the semaphore before terminating
    // since this thread could be terminating itself
    osThreadId_t local_id = _tid;
    _join_sem.release();
    _tid = (osThreadId_t)NULL;
    if (!_finished) {
        _finished = true;
        // if local_id == 0 Thread was not started in first place
        // and does not have to be terminated
        if (local_id != 0) {
            ret = osThreadTerminate(local_id);
        }
    }
    _mutex.unlock();
    return ret;
}

osStatus Thread::join() {
    int32_t ret = _join_sem.wait();
    if (ret < 0) {
        return osError;
    }

    // The semaphore has been released so this thread is being
    // terminated or has been terminated. Once the mutex has
    // been locked it is ensured that the thread is deleted.
    _mutex.lock();
    MBED_ASSERT(NULL == _tid);
    _mutex.unlock();

    // Release sem so any other threads joining this thread wake up
    _join_sem.release();
    return osOK;
}

osStatus Thread::set_priority(osPriority priority) {
    osStatus_t ret;
    _mutex.lock();

    ret = osThreadSetPriority(_tid, priority);

    _mutex.unlock();
    return ret;
}

osPriority Thread::get_priority() {
    osPriority_t ret;
    _mutex.lock();

    ret = osThreadGetPriority(_tid);

    _mutex.unlock();
    return ret;
}

int32_t Thread::signal_set(int32_t flags) {
    return osThreadFlagsSet(_tid, flags);
}

Thread::State Thread::get_state() {
    uint8_t state = osThreadTerminated;

    _mutex.lock();

    if (_tid != NULL) {
#if defined(MBED_OS_BACKEND_RTX5)
        state = _obj_mem.state;
#else
        state = osThreadGetState(_tid);
#endif
    }

    _mutex.unlock();

    State user_state;

    switch(state) {
        case osThreadInactive:
            user_state = Inactive;
            break;
        case osThreadReady:
            user_state = Ready;
            break;
        case osThreadRunning:
            user_state = Running;
            break;
#if defined(MBED_OS_BACKEND_RTX5)
        case osRtxThreadWaitingDelay:
            user_state = WaitingDelay;
            break;
        case osRtxThreadWaitingJoin:
            user_state = WaitingJoin;
            break;
        case osRtxThreadWaitingThreadFlags:
            user_state = WaitingThreadFlag;
            break;
        case osRtxThreadWaitingEventFlags:
            user_state = WaitingEventFlag;
            break;
        case osRtxThreadWaitingMutex:
            user_state = WaitingMutex;
            break;
        case osRtxThreadWaitingSemaphore:
            user_state = WaitingSemaphore;
            break;
        case osRtxThreadWaitingMemoryPool:
            user_state = WaitingMemoryPool;
            break;
        case osRtxThreadWaitingMessageGet:
            user_state = WaitingMessageGet;
            break;
        case osRtxThreadWaitingMessagePut:
            user_state = WaitingMessagePut;
            break;
#endif
        case osThreadTerminated:
        default:
            user_state = Deleted;
            break;
    }

    return user_state;
}

uint32_t Thread::stack_size() {
    uint32_t size = 0;
    _mutex.lock();

    if (_tid != NULL) {
        size = osThreadGetStackSize(_tid);
    }

    _mutex.unlock();
    return size;
}

uint32_t Thread::free_stack() {
    uint32_t size = 0;
    _mutex.lock();

#if defined(MBED_OS_BACKEND_RTX5)
    if (_tid != NULL) {
        os_thread_t *thread = (os_thread_t *)_tid;
        size = (uint32_t)thread->sp - (uint32_t)thread->stack_mem;
    }
#endif

    _mutex.unlock();
    return size;
}

uint32_t Thread::used_stack() {
    uint32_t size = 0;
    _mutex.lock();

#if defined(MBED_OS_BACKEND_RTX5)
    if (_tid != NULL) {
        os_thread_t *thread = (os_thread_t *)_tid;
        size = ((uint32_t)thread->stack_mem + thread->stack_size) - thread->sp;
    }
#endif

    _mutex.unlock();
    return size;
}

uint32_t Thread::max_stack() {
    uint32_t size = 0;
    _mutex.lock();

    if (_tid != NULL) {
#if defined(MBED_OS_BACKEND_RTX5)
        os_thread_t *thread = (os_thread_t *)_tid;
        uint32_t high_mark = 0;
        while (((uint32_t *)(thread->stack_mem))[high_mark] == 0xE25A2EA5)
            high_mark++;
        size = thread->stack_size - (high_mark * sizeof(uint32_t));
#else
        size = osThreadGetStackSize(_tid) - osThreadGetStackSpace(_tid);
#endif
    }

    _mutex.unlock();
    return size;
}

const char *Thread::get_name() {
    return _attr.name;
}

int32_t Thread::signal_clr(int32_t flags) {
    return osThreadFlagsClear(flags);
}

osEvent Thread::signal_wait(int32_t signals, uint32_t millisec) {
    uint32_t res;
    osEvent evt;
    uint32_t options = osFlagsWaitAll;
    if (signals == 0) {
        options = osFlagsWaitAny;
        signals = 0x7FFFFFFF;
    }
    res = osThreadFlagsWait(signals, options, millisec);
    if (res & osFlagsError) {
        switch (res) {
            case osFlagsErrorISR:
                evt.status = osErrorISR;
                break;
            case osFlagsErrorResource:
                evt.status = osOK;
                break;
            case osFlagsErrorTimeout:
                evt.status = (osStatus)osEventTimeout;
                break;
            case osFlagsErrorParameter:
            default:
                evt.status = (osStatus)osErrorValue;
                break;
        }
    } else {
        evt.status = (osStatus)osEventSignal;
        evt.value.signals = res;
    }

    return evt;
}

osStatus Thread::wait(uint32_t millisec) {
    return osDelay(millisec);
}

osStatus Thread::wait_until(uint64_t millisec) {
    // CMSIS-RTOS 2.1.0 and 2.1.1 differ in the time type, which we determine
    // by looking at the return type of osKernelGetTickCount. We assume
    // our header at least matches the implementation, so we don't try looking
    // at the run-time version report. (There's no compile-time version report)
    if (sizeof osKernelGetTickCount() == sizeof(uint64_t)) {
        // CMSIS-RTOS 2.1.0 has a 64-bit API. The corresponding RTX 5.2.0 can't
        // delay more than 0xfffffffe ticks, but there's no limit stated for
        // the generic API.
        return osDelayUntil(millisec);
    } else {
        // 64-bit time doesn't wrap (for half a billion years, at last)
        uint64_t now = Kernel::get_ms_count();
        // Report being late on entry
        if (now >= millisec) {
            return osErrorParameter;
        }
        // We're about to make a 32-bit delay call, so have at least this limit
        if (millisec - now > 0xFFFFFFFF) {
            return osErrorParameter;
        }
        // And this may have its own internal limit - we'll find out.
        // We hope/assume there's no problem with passing
        // osWaitForever = 0xFFFFFFFF - that value is only specified to have
        // special meaning for osSomethingWait calls.
        return osDelay(millisec - now);
    }
}

osStatus Thread::yield() {
    return osThreadYield();
}

osThreadId Thread::gettid() {
    return osThreadGetId();
}

void Thread::attach_idle_hook(void (*fptr)(void)) {
    rtos_attach_idle_hook(fptr);
}

void Thread::attach_terminate_hook(void (*fptr)(osThreadId_t id)) {
    terminate_hook = fptr;
}

Thread::~Thread() {
    // terminate is thread safe
    terminate();
    if (_dynamic_stack) {
        delete[] (uint32_t*)(_attr.stack_mem);
        _attr.stack_mem = (uint32_t*)NULL;
    }
}

void Thread::_thunk(void * thread_ptr)
{
    Thread *t = (Thread*)thread_ptr;
    t->_task();
    t->_mutex.lock();
    t->_tid = (osThreadId)NULL;
    t->_finished = true;
    t->_join_sem.release();
    // rtos will release the mutex automatically
}

}