Nicolas Borla
/
BBR_1Ebene
BBR 1 Ebene
mbed-os/TESTS/events/timing/main.cpp
- Committer:
- borlanic
- Date:
- 2018-05-14
- Revision:
- 0:fbdae7e6d805
File content as of revision 0:fbdae7e6d805:
/* mbed Microcontroller Library * Copyright (c) 2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_events.h" #include "mbed.h" #include "rtos.h" #include "greentea-client/test_env.h" #include "unity.h" #include "utest.h" #include <cstdlib> #include <cmath> using namespace utest::v1; // Test delay #ifndef TEST_EVENTS_TIMING_TIME #define TEST_EVENTS_TIMING_TIME 20000 #endif #ifndef TEST_EVENTS_TIMING_MEAN #define TEST_EVENTS_TIMING_MEAN 25 #endif #ifndef M_PI #define M_PI 3.14159265358979323846264338327950288 #endif // Random number generation to skew timing values float gauss(float mu, float sigma) { float x = (float)rand() / ((float)RAND_MAX+1); float y = (float)rand() / ((float)RAND_MAX+1); float x2pi = x*2.0*M_PI; float g2rad = sqrt(-2.0 * log(1.0-y)); float z = cos(x2pi) * g2rad; return mu + z*sigma; } float chisq(float sigma) { return pow(gauss(0, sqrt(sigma)), 2); } Timer timer; DigitalOut led(LED1); equeue_sema_t sema; // Timer timing test void timer_timing_test() { timer.reset(); timer.start(); int prev = timer.read_us(); while (prev < TEST_EVENTS_TIMING_TIME*1000) { int next = timer.read_us(); if (next < prev) { printf("backwards drift %d -> %d (%08x -> %08x)\r\n", prev, next, prev, next); } TEST_ASSERT(next >= prev); prev = next; } } // equeue tick timing test void tick_timing_test() { unsigned start = equeue_tick(); int prev = 0; while (prev < TEST_EVENTS_TIMING_TIME) { int next = equeue_tick() - start; if (next < prev) { printf("backwards drift %d -> %d (%08x -> %08x)\r\n", prev, next, prev, next); } TEST_ASSERT(next >= prev); prev = next; } } // equeue semaphore timing test void semaphore_timing_test() { srand(0); timer.reset(); timer.start(); int err = equeue_sema_create(&sema); TEST_ASSERT_EQUAL(0, err); while (timer.read_ms() < TEST_EVENTS_TIMING_TIME) { int delay = chisq(TEST_EVENTS_TIMING_MEAN); int start = timer.read_us(); equeue_sema_wait(&sema, delay); int taken = timer.read_us() - start; if (taken < (delay * 1000 - 5000) || taken > (delay * 1000 + 5000)) { printf("delay %dms => error %dus\r\n", delay, abs(1000 * delay - taken)); } TEST_ASSERT_INT_WITHIN(5000, taken, delay * 1000); led = !led; } equeue_sema_destroy(&sema); } // Test setup utest::v1::status_t test_setup(const size_t number_of_cases) { GREENTEA_SETUP((number_of_cases+1)*TEST_EVENTS_TIMING_TIME/1000, "default_auto"); return verbose_test_setup_handler(number_of_cases); } const Case cases[] = { Case("Testing accuracy of timer", timer_timing_test), Case("Testing accuracy of equeue tick", tick_timing_test), Case("Testing accuracy of equeue semaphore", semaphore_timing_test), }; Specification specification(test_setup, cases); int main() { return !Harness::run(specification); }