Nicolas Borla
/
BBR_1Ebene
BBR 1 Ebene
Diff: mbed-os/targets/TARGET_STM/sleep.c
- Revision:
- 0:fbdae7e6d805
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed-os/targets/TARGET_STM/sleep.c Mon May 14 11:29:06 2018 +0000 @@ -0,0 +1,214 @@ +/* mbed Microcontroller Library + ******************************************************************************* + * Copyright (c) 2016, STMicroelectronics + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + ******************************************************************************* + */ +#if DEVICE_SLEEP + +#include "sleep_api.h" +#include "rtc_api_hal.h" + +extern void HAL_SuspendTick(void); +extern void HAL_ResumeTick(void); + +/* Wait loop - assuming tick is 1 us */ +static void wait_loop(uint32_t timeout) +{ + uint32_t t1, t2, elapsed = 0; + t1 = us_ticker_read(); + do { + t2 = us_ticker_read(); + elapsed = (t2 > t1) ? (t2 - t1) : ((uint64_t)t2 + 0xFFFFFFFF - t1 + 1); + } while (elapsed < timeout); + return; +} + +// On L4 platforms we've seen unstable PLL CLK configuraiton +// when DEEP SLEEP exits just few µs after being entered +// So we need to force MSI usage before setting clocks again +static void ForceClockOutofDeepSleep(void) +{ + RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; + RCC_OscInitTypeDef RCC_OscInitStruct = {0}; + uint32_t pFLatency = 0; + + /* Enable Power Control clock */ + __HAL_RCC_PWR_CLK_ENABLE(); + +#ifdef PWR_FLAG_VOS + /* Poll VOSF bit of in PWR_CSR. Wait until it is reset to 0 */ + //while (__HAL_PWR_GET_FLAG(PWR_FLAG_VOS) != RESET) {}; +#endif + + /* Get the Oscillators configuration according to the internal RCC registers */ + HAL_RCC_GetOscConfig(&RCC_OscInitStruct); + +#if (TARGET_STM32L4 || TARGET_STM32L1) /* MSI used for L4 */ + /**Initializes the CPU, AHB and APB busses clocks + */ + RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI; + RCC_OscInitStruct.MSIState = RCC_MSI_ON; + RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT; + RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_4; // Intermediate freq, 1MHz range + RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; + if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { + error("clock issue\r\n"); + } + + /* Get the Clocks configuration according to the internal RCC registers */ + HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency); + + // Select HSI ss system clock source as a first step +#ifdef RCC_CLOCKTYPE_PCLK2 + RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK + | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); + RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; +#else + RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK + | RCC_CLOCKTYPE_PCLK1); +#endif + RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI; + RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; + RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; + if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency) != HAL_OK) { + error("clock issue\r\n"); + } +#else /* HSI used on others */ + /**Initializes the CPU, AHB and APB busses clocks + */ + RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; + RCC_OscInitStruct.HSIState = RCC_HSI_ON; + RCC_OscInitStruct.HSICalibrationValue = 16; + RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; + if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { + error("clock issue"); + } + + /* Get the Clocks configuration according to the internal RCC registers */ + HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &pFLatency); + + /**Initializes the CPU, AHB and APB busses clocks + */ +#ifdef RCC_CLOCKTYPE_PCLK2 + RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK + |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2); + RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; +#else + RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK + |RCC_CLOCKTYPE_PCLK1); +#endif + RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; + RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; + RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; + if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, pFLatency) != HAL_OK) { + error("clock issue"); + } +#endif // TARGET_STM32L4 +} + +void hal_sleep(void) +{ + // Disable IRQs + core_util_critical_section_enter(); + + // Stop HAL tick to avoid to exit sleep in 1ms + HAL_SuspendTick(); + // Request to enter SLEEP mode + HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI); + // Restart HAL tick + HAL_ResumeTick(); + + // Enable IRQs + core_util_critical_section_exit(); +} + +void hal_deepsleep(void) +{ + // Disable IRQs + core_util_critical_section_enter(); + + // Stop HAL tick + HAL_SuspendTick(); + uint32_t EnterTimeUS = us_ticker_read(); + + // Request to enter STOP mode with regulator in low power mode +#if TARGET_STM32L4 + int pwrClockEnabled = __HAL_RCC_PWR_IS_CLK_ENABLED(); + int lowPowerModeEnabled = PWR->CR1 & PWR_CR1_LPR; + + if (!pwrClockEnabled) { + __HAL_RCC_PWR_CLK_ENABLE(); + } + if (lowPowerModeEnabled) { + HAL_PWREx_DisableLowPowerRunMode(); + } + + HAL_PWREx_EnterSTOP2Mode(PWR_STOPENTRY_WFI); + + if (lowPowerModeEnabled) { + HAL_PWREx_EnableLowPowerRunMode(); + } + if (!pwrClockEnabled) { + __HAL_RCC_PWR_CLK_DISABLE(); + } +#else /* TARGET_STM32L4 */ + HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI); +#endif /* TARGET_STM32L4 */ + // Verify Clock Out of Deep Sleep + ForceClockOutofDeepSleep(); + + // Restart HAL tick + HAL_ResumeTick(); + + // After wake-up from STOP reconfigure the PLL + SetSysClock(); + + /* Wait for clock to be stabilized. + * TO DO: a better way of doing this, would be to rely on + * HW Flag. At least this ensures proper operation out of + * deep sleep */ + wait_loop(500); + + TIM_HandleTypeDef TimMasterHandle; + TimMasterHandle.Instance = TIM_MST; + __HAL_TIM_SET_COUNTER(&TimMasterHandle, EnterTimeUS); + +#if DEVICE_RTC + /* Wait for RTC RSF bit synchro if RTC is configured */ +#if (TARGET_STM32F2) || (TARGET_STM32F4) || (TARGET_STM32F7) + if (READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL)) { +#else /* (TARGET_STM32F2) || (TARGET_STM32F4) || (TARGET_STM32F7) */ + if (__HAL_RCC_GET_RTC_SOURCE()) { +#endif /* (TARGET_STM32F2) || (TARGET_STM32F4) || (TARGET_STM32F7) */ + rtc_synchronize(); + } +#endif + // Enable IRQs + core_util_critical_section_exit(); +} + +#endif