Nicolas Borla
/
BBR_1Ebene
BBR 1 Ebene
Diff: mbed-os/platform/NonCopyable.h
- Revision:
- 0:fbdae7e6d805
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed-os/platform/NonCopyable.h Mon May 14 11:29:06 2018 +0000 @@ -0,0 +1,211 @@ +/* Copyright (c) 2017 ARM Limited + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MBED_NONCOPYABLE_H_ +#define MBED_NONCOPYABLE_H_ + +#if (!defined(MBED_DEBUG) && (MBED_CONF_PLATFORM_FORCE_NON_COPYABLE_ERROR == 0)) +#include "mbed_toolchain.h" +#include "mbed_debug.h" +#endif + +namespace mbed { + +/** + * Inheriting from this class autogeneration of copy construction and copy + * assignment operations. + * + * Classes which are not value type should inherit privately from this class + * to avoid generation of invalid copy constructor or copy assignment operator + * which can lead to unnoticeable programming errors. + * + * As an example consider the following signature: + * + * @code + * class Resource; + * + * class Foo { + * public: + * Foo() : _resource(new Resource()) { } + * ~Foo() { delete _resource; } + * private: + * Resource* _resource; + * } + * + * Foo get_foo(); + * + * Foo foo = get_foo(); + * @endcode + * + * There is a bug in this function, it returns a temporary value which will be + * byte copied into foo then destroyed. Unfortunately, internally the Foo class + * manage a pointer to a Resource object. This pointer will be released when the + * temporary is destroyed and foo will manage a pointer to an already released + * Resource. + * + * Two issues has to be fixed in the example above: + * - Function signature has to be changed to reflect the fact that Foo + * instances cannot be copied. In that case accessor should return a + * reference to give access to objects already existing and managed. + * Generator on the other hand should return a pointer to the created object. + * + * @code + * // return a reference to an already managed Foo instance + * Foo& get_foo(); + * Foo& foo = get_foo(); + * + * // create a new Foo instance + * Foo* make_foo(); + * Foo* m = make_foo(); + * @endcode + * + * - Copy constructor and copy assignment operator has to be made private + * in the Foo class. It prevents unwanted copy of Foo objects. This can be + * done by declaring copy constructor and copy assignment in the private + * section of the Foo class. + * + * @code + * class Foo { + * public: + * Foo() : _resource(new Resource()) { } + * ~Foo() { delete _resource; } + * private: + * // disallow copy operations + * Foo(const Foo&); + * Foo& operator=(const Foo&); + * // data members + * Resource* _resource; + * } + * @endcode + * + * Another solution is to inherit privately from the NonCopyable class. + * It reduces the boiler plate needed to avoid copy operations but more + * importantly it clarifies the programmer intent and the object semantic. + * + * class Foo : private NonCopyable<Foo> { + * public: + * Foo() : _resource(new Resource()) { } + * ~Foo() { delete _resource; } + * private: + * Resource* _resource; + * } + * + * @tparam T The type that should be made non copyable. It prevent cases where + * the empty base optimization cannot be applied and therefore ensure that the + * cost of this semantic sugar is null. + * + * As an example, the empty base optimization is prohibited if one of the empty + * base class is also a base type of the first non static data member: + * + * @code + * struct A { }; + * struct B : A { + * int foo; + * }; + * // thanks to empty base optimization, sizeof(B) == sizeof(int) + * + * struct C : A { + * B b; + * }; + * + * // empty base optimization cannot be applied here because A from C and A from + * // B shall have a different address. In that case, with the alignment + * // sizeof(C) == 2* sizeof(int) + * @endcode + * + * The solution to that problem is to templatize the empty class to makes it + * unique to the type it is applied to: + * + * @code + * template<typename T> + * struct A<T> { }; + * struct B : A<B> { + * int foo; + * }; + * struct C : A<C> { + * B b; + * }; + * + * // empty base optimization can be applied B and C does not refer to the same + * // kind of A. sizeof(C) == sizeof(B) == sizeof(int). + * @endcode + * + * @note Compile time errors are disabled if the develop or the release profile + * is used. To override this behavior and force compile time errors in all profile + * set the configuration parameter "platform.force-non-copyable-error" to true. + */ +template<typename T> +class NonCopyable { +protected: + /** + * Disallow construction of NonCopyable objects from outside of its hierarchy. + */ + NonCopyable() { } + /** + * Disallow destruction of NonCopyable objects from outside of its hierarchy. + */ + ~NonCopyable() { } + +#if (!defined(MBED_DEBUG) && (MBED_CONF_PLATFORM_FORCE_NON_COPYABLE_ERROR == 0)) + /** + * NonCopyable copy constructor. + * + * A compile time warning is issued when this function is used and a runtime + * warning is printed when the copy construction of the non copyable happens. + * + * If you see this warning, your code is probably doing something unspecified. + * Copy of non copyable resources can lead to resource leak and random error. + */ + MBED_DEPRECATED("Invalid copy construction of a NonCopyable resource.") + NonCopyable(const NonCopyable&) + { + debug("Invalid copy construction of a NonCopyable resource: %s\r\n", MBED_PRETTY_FUNCTION); + } + + /** + * NonCopyable copy assignment operator. + * + * A compile time warning is issued when this function is used and a runtime + * warning is printed when the copy construction of the non copyable happens. + * + * If you see this warning, your code is probably doing something unspecified. + * Copy of non copyable resources can lead to resource leak and random error. + */ + MBED_DEPRECATED("Invalid copy assignment of a NonCopyable resource.") + NonCopyable& operator=(const NonCopyable&) + { + debug("Invalid copy assignment of a NonCopyable resource: %s\r\n", MBED_PRETTY_FUNCTION); + return *this; + } + +#else +private: + /** + * Declare copy constructor as private, any attempt to copy construct + * a NonCopyable will fail at compile time. + */ + NonCopyable(const NonCopyable&); + + /** + * Declare copy assignment operator as private, any attempt to copy assign + * a NonCopyable will fail at compile time. + */ + NonCopyable& operator=(const NonCopyable&); +#endif +}; + +} // namespace mbed + +#endif /* MBED_NONCOPYABLE_H_ */