rotary encoder with push button based on work I found elswhere.

Dependents:   Vario_101_407mini

Committer:
bomilkar
Date:
Mon Dec 18 16:54:00 2017 +0000
Revision:
0:ef2f1bbeb8e1
Initial

Who changed what in which revision?

UserRevisionLine numberNew contents of line
bomilkar 0:ef2f1bbeb8e1 1 /**
bomilkar 0:ef2f1bbeb8e1 2 * @author Aaron Berk
bomilkar 0:ef2f1bbeb8e1 3 *
bomilkar 0:ef2f1bbeb8e1 4 * @section LICENSE
bomilkar 0:ef2f1bbeb8e1 5 *
bomilkar 0:ef2f1bbeb8e1 6 * Copyright (c) 2010 ARM Limited
bomilkar 0:ef2f1bbeb8e1 7 *
bomilkar 0:ef2f1bbeb8e1 8 * Permission is hereby granted, free of charge, to any person obtaining a copy
bomilkar 0:ef2f1bbeb8e1 9 * of this software and associated documentation files (the "Software"), to deal
bomilkar 0:ef2f1bbeb8e1 10 * in the Software without restriction, including without limitation the rights
bomilkar 0:ef2f1bbeb8e1 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
bomilkar 0:ef2f1bbeb8e1 12 * copies of the Software, and to permit persons to whom the Software is
bomilkar 0:ef2f1bbeb8e1 13 * furnished to do so, subject to the following conditions:
bomilkar 0:ef2f1bbeb8e1 14 *
bomilkar 0:ef2f1bbeb8e1 15 * The above copyright notice and this permission notice shall be included in
bomilkar 0:ef2f1bbeb8e1 16 * all copies or substantial portions of the Software.
bomilkar 0:ef2f1bbeb8e1 17 *
bomilkar 0:ef2f1bbeb8e1 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
bomilkar 0:ef2f1bbeb8e1 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
bomilkar 0:ef2f1bbeb8e1 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
bomilkar 0:ef2f1bbeb8e1 21 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
bomilkar 0:ef2f1bbeb8e1 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
bomilkar 0:ef2f1bbeb8e1 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
bomilkar 0:ef2f1bbeb8e1 24 * THE SOFTWARE.
bomilkar 0:ef2f1bbeb8e1 25 *
bomilkar 0:ef2f1bbeb8e1 26 * @section DESCRIPTION
bomilkar 0:ef2f1bbeb8e1 27 *
bomilkar 0:ef2f1bbeb8e1 28 * Quadrature Encoder Interface.
bomilkar 0:ef2f1bbeb8e1 29 *
bomilkar 0:ef2f1bbeb8e1 30 * A quadrature encoder consists of two code tracks on a disc which are 90
bomilkar 0:ef2f1bbeb8e1 31 * degrees out of phase. It can be used to determine how far a wheel has
bomilkar 0:ef2f1bbeb8e1 32 * rotated, relative to a known starting position.
bomilkar 0:ef2f1bbeb8e1 33 *
bomilkar 0:ef2f1bbeb8e1 34 * Only one code track changes at a time leading to a more robust system than
bomilkar 0:ef2f1bbeb8e1 35 * a single track, because any jitter around any edge won't cause a state
bomilkar 0:ef2f1bbeb8e1 36 * change as the other track will remain constant.
bomilkar 0:ef2f1bbeb8e1 37 *
bomilkar 0:ef2f1bbeb8e1 38 * Encoders can be a homebrew affair, consisting of infrared emitters/receivers
bomilkar 0:ef2f1bbeb8e1 39 * and paper code tracks consisting of alternating black and white sections;
bomilkar 0:ef2f1bbeb8e1 40 * alternatively, complete disk and PCB emitter/receiver encoder systems can
bomilkar 0:ef2f1bbeb8e1 41 * be bought, but the interface, regardless of implementation is the same.
bomilkar 0:ef2f1bbeb8e1 42 *
bomilkar 0:ef2f1bbeb8e1 43 * +-----+ +-----+ +-----+
bomilkar 0:ef2f1bbeb8e1 44 * Channel A | ^ | | | | |
bomilkar 0:ef2f1bbeb8e1 45 * ---+ ^ +-----+ +-----+ +-----
bomilkar 0:ef2f1bbeb8e1 46 * ^ ^
bomilkar 0:ef2f1bbeb8e1 47 * ^ +-----+ +-----+ +-----+
bomilkar 0:ef2f1bbeb8e1 48 * Channel B ^ | | | | | |
bomilkar 0:ef2f1bbeb8e1 49 * ------+ +-----+ +-----+ +-----
bomilkar 0:ef2f1bbeb8e1 50 * ^ ^
bomilkar 0:ef2f1bbeb8e1 51 * ^ ^
bomilkar 0:ef2f1bbeb8e1 52 * 90deg
bomilkar 0:ef2f1bbeb8e1 53 *
bomilkar 0:ef2f1bbeb8e1 54 * The interface uses X2 encoding by default which calculates the pulse count
bomilkar 0:ef2f1bbeb8e1 55 * based on reading the current state after each rising and falling edge of
bomilkar 0:ef2f1bbeb8e1 56 * channel A.
bomilkar 0:ef2f1bbeb8e1 57 *
bomilkar 0:ef2f1bbeb8e1 58 * +-----+ +-----+ +-----+
bomilkar 0:ef2f1bbeb8e1 59 * Channel A | | | | | |
bomilkar 0:ef2f1bbeb8e1 60 * ---+ +-----+ +-----+ +-----
bomilkar 0:ef2f1bbeb8e1 61 * ^ ^ ^ ^ ^
bomilkar 0:ef2f1bbeb8e1 62 * ^ +-----+ ^ +-----+ ^ +-----+
bomilkar 0:ef2f1bbeb8e1 63 * Channel B ^ | ^ | ^ | ^ | ^ | |
bomilkar 0:ef2f1bbeb8e1 64 * ------+ ^ +-----+ ^ +-----+ +--
bomilkar 0:ef2f1bbeb8e1 65 * ^ ^ ^ ^ ^
bomilkar 0:ef2f1bbeb8e1 66 * ^ ^ ^ ^ ^
bomilkar 0:ef2f1bbeb8e1 67 * Pulse count 0 1 2 3 4 5 ...
bomilkar 0:ef2f1bbeb8e1 68 *
bomilkar 0:ef2f1bbeb8e1 69 * This interface can also use X4 encoding which calculates the pulse count
bomilkar 0:ef2f1bbeb8e1 70 * based on reading the current state after each rising and falling edge of
bomilkar 0:ef2f1bbeb8e1 71 * either channel.
bomilkar 0:ef2f1bbeb8e1 72 *
bomilkar 0:ef2f1bbeb8e1 73 * +-----+ +-----+ +-----+
bomilkar 0:ef2f1bbeb8e1 74 * Channel A | | | | | |
bomilkar 0:ef2f1bbeb8e1 75 * ---+ +-----+ +-----+ +-----
bomilkar 0:ef2f1bbeb8e1 76 * ^ ^ ^ ^ ^
bomilkar 0:ef2f1bbeb8e1 77 * ^ +-----+ ^ +-----+ ^ +-----+
bomilkar 0:ef2f1bbeb8e1 78 * Channel B ^ | ^ | ^ | ^ | ^ | |
bomilkar 0:ef2f1bbeb8e1 79 * ------+ ^ +-----+ ^ +-----+ +--
bomilkar 0:ef2f1bbeb8e1 80 * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
bomilkar 0:ef2f1bbeb8e1 81 * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
bomilkar 0:ef2f1bbeb8e1 82 * Pulse count 0 1 2 3 4 5 6 7 8 9 ...
bomilkar 0:ef2f1bbeb8e1 83 *
bomilkar 0:ef2f1bbeb8e1 84 * It defaults
bomilkar 0:ef2f1bbeb8e1 85 *
bomilkar 0:ef2f1bbeb8e1 86 * An optional index channel can be used which determines when a full
bomilkar 0:ef2f1bbeb8e1 87 * revolution has occured.
bomilkar 0:ef2f1bbeb8e1 88 *
bomilkar 0:ef2f1bbeb8e1 89 * If a 4 pules per revolution encoder was used, with X4 encoding,
bomilkar 0:ef2f1bbeb8e1 90 * the following would be observed.
bomilkar 0:ef2f1bbeb8e1 91 *
bomilkar 0:ef2f1bbeb8e1 92 * +-----+ +-----+ +-----+
bomilkar 0:ef2f1bbeb8e1 93 * Channel A | | | | | |
bomilkar 0:ef2f1bbeb8e1 94 * ---+ +-----+ +-----+ +-----
bomilkar 0:ef2f1bbeb8e1 95 * ^ ^ ^ ^ ^
bomilkar 0:ef2f1bbeb8e1 96 * ^ +-----+ ^ +-----+ ^ +-----+
bomilkar 0:ef2f1bbeb8e1 97 * Channel B ^ | ^ | ^ | ^ | ^ | |
bomilkar 0:ef2f1bbeb8e1 98 * ------+ ^ +-----+ ^ +-----+ +--
bomilkar 0:ef2f1bbeb8e1 99 * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
bomilkar 0:ef2f1bbeb8e1 100 * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
bomilkar 0:ef2f1bbeb8e1 101 * ^ ^ ^ +--+ ^ ^ +--+ ^
bomilkar 0:ef2f1bbeb8e1 102 * ^ ^ ^ | | ^ ^ | | ^
bomilkar 0:ef2f1bbeb8e1 103 * Index ------------+ +--------+ +-----------
bomilkar 0:ef2f1bbeb8e1 104 * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
bomilkar 0:ef2f1bbeb8e1 105 * Pulse count 0 1 2 3 4 5 6 7 8 9 ...
bomilkar 0:ef2f1bbeb8e1 106 * Rev. count 0 1 2
bomilkar 0:ef2f1bbeb8e1 107 *
bomilkar 0:ef2f1bbeb8e1 108 * Rotational position in degrees can be calculated by:
bomilkar 0:ef2f1bbeb8e1 109 *
bomilkar 0:ef2f1bbeb8e1 110 * (pulse count / X * N) * 360
bomilkar 0:ef2f1bbeb8e1 111 *
bomilkar 0:ef2f1bbeb8e1 112 * Where X is the encoding type [e.g. X4 encoding => X=4], and N is the number
bomilkar 0:ef2f1bbeb8e1 113 * of pulses per revolution.
bomilkar 0:ef2f1bbeb8e1 114 *
bomilkar 0:ef2f1bbeb8e1 115 * Linear position can be calculated by:
bomilkar 0:ef2f1bbeb8e1 116 *
bomilkar 0:ef2f1bbeb8e1 117 * (pulse count / X * N) * (1 / PPI)
bomilkar 0:ef2f1bbeb8e1 118 *
bomilkar 0:ef2f1bbeb8e1 119 * Where X is encoding type [e.g. X4 encoding => X=44], N is the number of
bomilkar 0:ef2f1bbeb8e1 120 * pulses per revolution, and PPI is pulses per inch, or the equivalent for
bomilkar 0:ef2f1bbeb8e1 121 * any other unit of displacement. PPI can be calculated by taking the
bomilkar 0:ef2f1bbeb8e1 122 * circumference of the wheel or encoder disk and dividing it by the number
bomilkar 0:ef2f1bbeb8e1 123 * of pulses per revolution.
bomilkar 0:ef2f1bbeb8e1 124 */
bomilkar 0:ef2f1bbeb8e1 125
bomilkar 0:ef2f1bbeb8e1 126 /**
bomilkar 0:ef2f1bbeb8e1 127 * Includes
bomilkar 0:ef2f1bbeb8e1 128 */
bomilkar 0:ef2f1bbeb8e1 129 #include "QEI.h"
bomilkar 0:ef2f1bbeb8e1 130
bomilkar 0:ef2f1bbeb8e1 131 QEI::QEI(PinName channelA,
bomilkar 0:ef2f1bbeb8e1 132 PinName channelB,
bomilkar 0:ef2f1bbeb8e1 133 int pulsesPerRev,
bomilkar 0:ef2f1bbeb8e1 134 Encoding encoding) : channelA_(channelA), channelB_(channelB)
bomilkar 0:ef2f1bbeb8e1 135 {
bomilkar 0:ef2f1bbeb8e1 136
bomilkar 0:ef2f1bbeb8e1 137 // channelA_.mode(PullUp);
bomilkar 0:ef2f1bbeb8e1 138 // channelB_.mode(PullUp);
bomilkar 0:ef2f1bbeb8e1 139
bomilkar 0:ef2f1bbeb8e1 140 pulses_ = 0;
bomilkar 0:ef2f1bbeb8e1 141 pulsesPerRev_ = pulsesPerRev;
bomilkar 0:ef2f1bbeb8e1 142 encoding_ = encoding;
bomilkar 0:ef2f1bbeb8e1 143
bomilkar 0:ef2f1bbeb8e1 144 //Workout what the current state is.
bomilkar 0:ef2f1bbeb8e1 145 int chanA = channelA_.read();
bomilkar 0:ef2f1bbeb8e1 146 int chanB = channelB_.read();
bomilkar 0:ef2f1bbeb8e1 147
bomilkar 0:ef2f1bbeb8e1 148 //2-bit state.
bomilkar 0:ef2f1bbeb8e1 149 currState_ = (chanA << 1) | (chanB);
bomilkar 0:ef2f1bbeb8e1 150 prevState_ = currState_;
bomilkar 0:ef2f1bbeb8e1 151
bomilkar 0:ef2f1bbeb8e1 152 //X2 encoding uses interrupts on only channel A.
bomilkar 0:ef2f1bbeb8e1 153 //X4 encoding uses interrupts on channel A,
bomilkar 0:ef2f1bbeb8e1 154 //and on channel B.
bomilkar 0:ef2f1bbeb8e1 155
bomilkar 0:ef2f1bbeb8e1 156 channelA_.rise(callback(this, &QEI::encode));
bomilkar 0:ef2f1bbeb8e1 157 channelA_.fall(callback(this, &QEI::encode));
bomilkar 0:ef2f1bbeb8e1 158
bomilkar 0:ef2f1bbeb8e1 159 //If we're using X4 encoding, then attach interrupts to channel B too.
bomilkar 0:ef2f1bbeb8e1 160 if (encoding == X4_ENCODING) {
bomilkar 0:ef2f1bbeb8e1 161 channelB_.rise(callback(this, &QEI::encode));
bomilkar 0:ef2f1bbeb8e1 162 channelB_.fall(callback(this, &QEI::encode));
bomilkar 0:ef2f1bbeb8e1 163 }
bomilkar 0:ef2f1bbeb8e1 164
bomilkar 0:ef2f1bbeb8e1 165 /*
bomilkar 0:ef2f1bbeb8e1 166 //Index is optional.
bomilkar 0:ef2f1bbeb8e1 167 if (index != NC) {
bomilkar 0:ef2f1bbeb8e1 168 index_.rise(this, &QEI::index);
bomilkar 0:ef2f1bbeb8e1 169 }
bomilkar 0:ef2f1bbeb8e1 170 */
bomilkar 0:ef2f1bbeb8e1 171 }
bomilkar 0:ef2f1bbeb8e1 172
bomilkar 0:ef2f1bbeb8e1 173 void QEI::reset(void) {
bomilkar 0:ef2f1bbeb8e1 174
bomilkar 0:ef2f1bbeb8e1 175 pulses_ = 0;
bomilkar 0:ef2f1bbeb8e1 176
bomilkar 0:ef2f1bbeb8e1 177 }
bomilkar 0:ef2f1bbeb8e1 178
bomilkar 0:ef2f1bbeb8e1 179 int QEI::getCurrentState(void) {
bomilkar 0:ef2f1bbeb8e1 180
bomilkar 0:ef2f1bbeb8e1 181 return currState_;
bomilkar 0:ef2f1bbeb8e1 182
bomilkar 0:ef2f1bbeb8e1 183 }
bomilkar 0:ef2f1bbeb8e1 184
bomilkar 0:ef2f1bbeb8e1 185 int QEI::getPulses(void) {
bomilkar 0:ef2f1bbeb8e1 186
bomilkar 0:ef2f1bbeb8e1 187 return pulses_;
bomilkar 0:ef2f1bbeb8e1 188
bomilkar 0:ef2f1bbeb8e1 189 }
bomilkar 0:ef2f1bbeb8e1 190
bomilkar 0:ef2f1bbeb8e1 191
bomilkar 0:ef2f1bbeb8e1 192 // +-------------+
bomilkar 0:ef2f1bbeb8e1 193 // | X2 Encoding |
bomilkar 0:ef2f1bbeb8e1 194 // +-------------+
bomilkar 0:ef2f1bbeb8e1 195 //
bomilkar 0:ef2f1bbeb8e1 196 // When observing states two patterns will appear:
bomilkar 0:ef2f1bbeb8e1 197 //
bomilkar 0:ef2f1bbeb8e1 198 // Counter clockwise rotation:
bomilkar 0:ef2f1bbeb8e1 199 //
bomilkar 0:ef2f1bbeb8e1 200 // 10 -> 01 -> 10 -> 01 -> ...
bomilkar 0:ef2f1bbeb8e1 201 //
bomilkar 0:ef2f1bbeb8e1 202 // Clockwise rotation:
bomilkar 0:ef2f1bbeb8e1 203 //
bomilkar 0:ef2f1bbeb8e1 204 // 11 -> 00 -> 11 -> 00 -> ...
bomilkar 0:ef2f1bbeb8e1 205 //
bomilkar 0:ef2f1bbeb8e1 206 // We consider counter clockwise rotation to be "forward" and
bomilkar 0:ef2f1bbeb8e1 207 // counter clockwise to be "backward". Therefore pulse count will increase
bomilkar 0:ef2f1bbeb8e1 208 // during counter clockwise rotation and decrease during clockwise rotation.
bomilkar 0:ef2f1bbeb8e1 209 //
bomilkar 0:ef2f1bbeb8e1 210 // +-------------+
bomilkar 0:ef2f1bbeb8e1 211 // | X4 Encoding |
bomilkar 0:ef2f1bbeb8e1 212 // +-------------+
bomilkar 0:ef2f1bbeb8e1 213 //
bomilkar 0:ef2f1bbeb8e1 214 // There are four possible states for a quadrature encoder which correspond to
bomilkar 0:ef2f1bbeb8e1 215 // 2-bit gray code.
bomilkar 0:ef2f1bbeb8e1 216 //
bomilkar 0:ef2f1bbeb8e1 217 // A state change is only valid if of only one bit has changed.
bomilkar 0:ef2f1bbeb8e1 218 // A state change is invalid if both bits have changed.
bomilkar 0:ef2f1bbeb8e1 219 //
bomilkar 0:ef2f1bbeb8e1 220 // Clockwise Rotation ->
bomilkar 0:ef2f1bbeb8e1 221 //
bomilkar 0:ef2f1bbeb8e1 222 // 00 01 11 10 00
bomilkar 0:ef2f1bbeb8e1 223 //
bomilkar 0:ef2f1bbeb8e1 224 // <- Counter Clockwise Rotation
bomilkar 0:ef2f1bbeb8e1 225 //
bomilkar 0:ef2f1bbeb8e1 226 // If we observe any valid state changes going from left to right, we have
bomilkar 0:ef2f1bbeb8e1 227 // moved one pulse clockwise [we will consider this "backward" or "negative"].
bomilkar 0:ef2f1bbeb8e1 228 //
bomilkar 0:ef2f1bbeb8e1 229 // If we observe any valid state changes going from right to left we have
bomilkar 0:ef2f1bbeb8e1 230 // moved one pulse counter clockwise [we will consider this "forward" or
bomilkar 0:ef2f1bbeb8e1 231 // "positive"].
bomilkar 0:ef2f1bbeb8e1 232 //
bomilkar 0:ef2f1bbeb8e1 233 // We might enter an invalid state for a number of reasons which are hard to
bomilkar 0:ef2f1bbeb8e1 234 // predict - if this is the case, it is generally safe to ignore it, update
bomilkar 0:ef2f1bbeb8e1 235 // the state and carry on, with the error correcting itself shortly after.
bomilkar 0:ef2f1bbeb8e1 236 void QEI::encode(void) {
bomilkar 0:ef2f1bbeb8e1 237
bomilkar 0:ef2f1bbeb8e1 238 int change = 0;
bomilkar 0:ef2f1bbeb8e1 239 int chanA = channelA_.read();
bomilkar 0:ef2f1bbeb8e1 240 int chanB = channelB_.read();
bomilkar 0:ef2f1bbeb8e1 241
bomilkar 0:ef2f1bbeb8e1 242 //2-bit state.
bomilkar 0:ef2f1bbeb8e1 243 currState_ = (chanA << 1) | (chanB);
bomilkar 0:ef2f1bbeb8e1 244
bomilkar 0:ef2f1bbeb8e1 245 if (encoding_ == X2_ENCODING) {
bomilkar 0:ef2f1bbeb8e1 246
bomilkar 0:ef2f1bbeb8e1 247 //11->00->11->00 is counter clockwise rotation or "forward".
bomilkar 0:ef2f1bbeb8e1 248 if ((prevState_ == 0x3 && currState_ == 0x0) ||
bomilkar 0:ef2f1bbeb8e1 249 (prevState_ == 0x0 && currState_ == 0x3)) {
bomilkar 0:ef2f1bbeb8e1 250
bomilkar 0:ef2f1bbeb8e1 251 pulses_++;
bomilkar 0:ef2f1bbeb8e1 252
bomilkar 0:ef2f1bbeb8e1 253 }
bomilkar 0:ef2f1bbeb8e1 254 //10->01->10->01 is clockwise rotation or "backward".
bomilkar 0:ef2f1bbeb8e1 255 else if ((prevState_ == 0x2 && currState_ == 0x1) ||
bomilkar 0:ef2f1bbeb8e1 256 (prevState_ == 0x1 && currState_ == 0x2)) {
bomilkar 0:ef2f1bbeb8e1 257
bomilkar 0:ef2f1bbeb8e1 258 pulses_--;
bomilkar 0:ef2f1bbeb8e1 259
bomilkar 0:ef2f1bbeb8e1 260 }
bomilkar 0:ef2f1bbeb8e1 261
bomilkar 0:ef2f1bbeb8e1 262 } else if (encoding_ == X4_ENCODING) {
bomilkar 0:ef2f1bbeb8e1 263
bomilkar 0:ef2f1bbeb8e1 264 //Entered a new valid state.
bomilkar 0:ef2f1bbeb8e1 265 if (((currState_ ^ prevState_) != INVALID) && (currState_ != prevState_)) {
bomilkar 0:ef2f1bbeb8e1 266 //2 bit state. Right hand bit of prev XOR left hand bit of current
bomilkar 0:ef2f1bbeb8e1 267 //gives 0 if clockwise rotation and 1 if counter clockwise rotation.
bomilkar 0:ef2f1bbeb8e1 268 change = (prevState_ & PREV_MASK) ^ ((currState_ & CURR_MASK) >> 1);
bomilkar 0:ef2f1bbeb8e1 269
bomilkar 0:ef2f1bbeb8e1 270 if (change == 0) {
bomilkar 0:ef2f1bbeb8e1 271 change = -1;
bomilkar 0:ef2f1bbeb8e1 272 }
bomilkar 0:ef2f1bbeb8e1 273
bomilkar 0:ef2f1bbeb8e1 274 pulses_ -= change;
bomilkar 0:ef2f1bbeb8e1 275 }
bomilkar 0:ef2f1bbeb8e1 276
bomilkar 0:ef2f1bbeb8e1 277 }
bomilkar 0:ef2f1bbeb8e1 278
bomilkar 0:ef2f1bbeb8e1 279 prevState_ = currState_;
bomilkar 0:ef2f1bbeb8e1 280
bomilkar 0:ef2f1bbeb8e1 281 }
bomilkar 0:ef2f1bbeb8e1 282
bomilkar 0:ef2f1bbeb8e1 283