asif-test

Fork of LoRaWAN-lib by Semtech

LoRaMac.cpp

Committer:
mluis
Date:
2015-11-23
Revision:
1:91e4e6c60d1e
Parent:
0:91d1a7783bb9
Child:
2:14a5d6ad92d5

File content as of revision 1:91e4e6c60d1e:

/*
 / _____)             _              | |
( (____  _____ ____ _| |_ _____  ____| |__
 \____ \| ___ |    (_   _) ___ |/ ___)  _ \
 _____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
    (C)2013 Semtech

Description: LoRa MAC layer implementation

License: Revised BSD License, see LICENSE.TXT file include in the project

Maintainer: Miguel Luis and Gregory Cristian
*/
#include "board.h"

#include "LoRaMacCrypto.h"
#include "LoRaMac.h"

/*!
 * Maximum PHY layer payload size
 */
#define LORAMAC_PHY_MAXPAYLOAD                      255

/*!
 * Maximum MAC commands buffer size
 */
#define LORA_MAC_COMMAND_MAX_LENGTH                 15

/*!
 * Device IEEE EUI
 */
static uint8_t *LoRaMacDevEui;

/*!
 * Application IEEE EUI
 */
static uint8_t *LoRaMacAppEui;

/*!
 * AES encryption/decryption cipher application key
 */
static uint8_t *LoRaMacAppKey;

/*!
 * AES encryption/decryption cipher network session key
 */
static uint8_t LoRaMacNwkSKey[] =
{
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

/*!
 * AES encryption/decryption cipher application session key
 */
static uint8_t LoRaMacAppSKey[] =
{
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

/*!
 * Device nonce is a random value extracted by issuing a sequence of RSSI
 * measurements
 */
static uint16_t LoRaMacDevNonce;

/*!
 * Network ID ( 3 bytes )
 */
static uint32_t LoRaMacNetID;

/*!
 * Mote Address
 */
static uint32_t LoRaMacDevAddr;

/*!
 * Mutlicast channels linked list
 */
static MulticastParams_t *MulticastChannels = NULL;

/*!
 * Actual device class
 */
static DeviceClass_t LoRaMacDeviceClass;

/*!
 * Indicates if the node is connected to a private or public network
 */
static bool PublicNetwork;

/*!
 * Indicates if the node supports repeaters
 */
static bool RepeaterSupport;

/*!
 * Buffer containing the data to be sent or received.
 */
static uint8_t LoRaMacBuffer[LORAMAC_PHY_MAXPAYLOAD];

/*!
 * Length of packet in LoRaMacBuffer
 */
static uint16_t LoRaMacBufferPktLen = 0;

/*!
 * Buffer containing the upper layer data.
 */
static uint8_t LoRaMacPayload[LORAMAC_PHY_MAXPAYLOAD];
static uint8_t LoRaMacRxPayload[LORAMAC_PHY_MAXPAYLOAD];

/*!
 * LoRaMAC frame counter. Each time a packet is sent the counter is incremented.
 * Only the 16 LSB bits are sent
 */
static uint32_t UpLinkCounter = 1;

/*!
 * LoRaMAC frame counter. Each time a packet is received the counter is incremented.
 * Only the 16 LSB bits are received
 */
static uint32_t DownLinkCounter = 0;

/*!
 * IsPacketCounterFixed enables the MIC field tests by fixing the
 * UpLinkCounter value
 */
static bool IsUpLinkCounterFixed = false;

/*!
 * Used for test purposes. Disables the opening of the reception windows.
 */
static bool IsRxWindowsEnabled = true;

/*!
 * Indicates if the MAC layer has already joined a network.
 */
static bool IsLoRaMacNetworkJoined = false;

/*!
 * LoRaMac ADR control status
 */
static bool AdrCtrlOn = false;

/*!
 * Counts the number of missed ADR acknowledgements
 */
static uint32_t AdrAckCounter = 0;

/*!
 * If the node has sent a FRAME_TYPE_DATA_CONFIRMED_UP this variable indicates
 * if the nodes needs to manage the server acknowledgement.
 */
static bool NodeAckRequested = false;

/*!
 * If the server has sent a FRAME_TYPE_DATA_CONFIRMED_DOWN this variable indicates
 * if the ACK bit must be set for the next transmission
 */
static bool SrvAckRequested = false;

/*!
 * Indicates if the MAC layer wants to send MAC commands
 */
static bool MacCommandsInNextTx = false;

/*!
 * Contains the current MacCommandsBuffer index
 */
static uint8_t MacCommandsBufferIndex = 0;

/*!
 * Buffer containing the MAC layer commands
 */
static uint8_t MacCommandsBuffer[LORA_MAC_COMMAND_MAX_LENGTH];

#if defined( USE_BAND_433 )
/*!
 * Data rates table definition
 */
const uint8_t Datarates[]  = { 12, 11, 10,  9,  8,  7,  7, 50 };

/*!
 * Maximum payload with respect to the datarate index. Cannot operate with repeater.
 */
const uint8_t MaxPayloadOfDatarate[] = { 59, 59, 59, 123, 250, 250, 250, 250 };

/*!
 * Maximum payload with respect to the datarate index. Can operate with repeater.
 */
const uint8_t MaxPayloadOfDatarateRepeater[] = { 59, 59, 59, 123, 230, 230, 230, 230 };

/*!
 * Tx output powers table definition
 */
const int8_t TxPowers[]    = { 20, 14, 11,  8,  5,  2 };

/*!
 * LoRaMac bands
 */
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
    BAND0,
};

/*!
 * LoRaMAC channels
 */
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
    LC1,
    LC2,
    LC3,
};
#elif defined( USE_BAND_780 )
/*!
 * Data rates table definition
 */
const uint8_t Datarates[]  = { 12, 11, 10,  9,  8,  7,  7, 50 };

/*!
 * Maximum payload with respect to the datarate index. Cannot operate with repeater.
 */
const uint8_t MaxPayloadOfDatarate[] = { 59, 59, 59, 123, 250, 250, 250, 250 };

/*!
 * Maximum payload with respect to the datarate index. Can operate with repeater.
 */
const uint8_t MaxPayloadOfDatarateRepeater[] = { 59, 59, 59, 123, 230, 230, 230, 230 };

/*!
 * Tx output powers table definition
 */
const int8_t TxPowers[]    = { 20, 14, 11,  8,  5,  2 };

/*!
 * LoRaMac bands
 */
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
    BAND0,
};

/*!
 * LoRaMAC channels
 */
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
    LC1,
    LC2,
    LC3,
};
#elif defined( USE_BAND_868 )
/*!
 * Data rates table definition
 */
const uint8_t Datarates[]  = { 12, 11, 10,  9,  8,  7,  7, 50 };

/*!
 * Maximum payload with respect to the datarate index. Cannot operate with repeater.
 */
const uint8_t MaxPayloadOfDatarate[] = { 51, 51, 51, 115, 242, 242, 242, 242 };

/*!
 * Maximum payload with respect to the datarate index. Can operate with repeater.
 */
const uint8_t MaxPayloadOfDatarateRepeater[] = { 51, 51, 51, 115, 222, 222, 222, 222 };

/*!
 * Tx output powers table definition
 */
const int8_t TxPowers[]    = { 20, 14, 11,  8,  5,  2 };

/*!
 * LoRaMac bands
 */
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
    BAND0,
    BAND1,
    BAND2,
    BAND3,
    BAND4,
};

/*!
 * LoRaMAC channels
 */
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
    LC1,
    LC2,
    LC3,
    LC4,
    LC5,
    LC6,
    LC7,
    LC8,
    LC9,
};
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*!
 * Data rates table definition
 */
const uint8_t Datarates[]  = { 10, 9, 8,  7,  8,  0,  0, 0, 12, 11, 10, 9, 8, 7, 0, 0 };

/*!
 * Up/Down link data rates offset definition
 */
const int8_t datarateOffsets[16][4] = 
{
    { DR_10, DR_9 , DR_8 , DR_8  }, // DR_0
    { DR_11, DR_10, DR_9 , DR_8  }, // DR_1
    { DR_12, DR_11, DR_10, DR_9  }, // DR_2
    { DR_13, DR_12, DR_11, DR_10 }, // DR_3
    { DR_13, DR_13, DR_12, DR_11 }, // DR_4
    { 0xFF , 0xFF , 0xFF , 0xFF  },
    { 0xFF , 0xFF , 0xFF , 0xFF  },
    { 0xFF , 0xFF , 0xFF , 0xFF  },
    { DR_8 , DR_8 , DR_8 , DR_8  },
    { DR_9 , DR_8 , DR_8 , DR_8  },
    { DR_10, DR_9 , DR_8 , DR_8  },
    { DR_11, DR_10, DR_9 , DR_8  },
    { DR_12, DR_11, DR_10, DR_9  },
    { DR_13, DR_12, DR_11, DR_10 },
    { 0xFF , 0xFF , 0xFF , 0xFF  },
    { 0xFF , 0xFF , 0xFF , 0xFF  },
};

/*!
 * Maximum payload with respect to the datarate index. Cannot operate with repeater.
 */
const uint8_t MaxPayloadOfDatarate[] = { 11, 53, 129, 242, 242, 0, 0, 0, 53, 129, 242, 242, 242, 242, 0, 0 };

/*!
 * Maximum payload with respect to the datarate index. Can operate with repeater.
 */
const uint8_t MaxPayloadOfDatarateRepeater[] = { 11, 53, 129, 242, 242, 0, 0, 0, 33, 103, 222, 222, 222, 222, 0, 0 };

/*!
 * Tx output powers table definition
 */
const int8_t TxPowers[]    = { 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10 };

/*!
 * LoRaMac bands
 */
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
    BAND0,
};

/*!
 * LoRaMAC channels
 */
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS];

#else
    #error "Please define a frequency band in the compiler options."
#endif

/*!
 * LoRaMAC 2nd reception window settings
 */
static Rx2ChannelParams_t Rx2Channel = RX_WND_2_CHANNEL;

/*!
 * Datarate offset between uplink and downlink on first window
 */
static uint8_t Rx1DrOffset = 0;

/*!
 * Mask indicating which channels are enabled
 */
static uint16_t ChannelsMask[6];

/*!
 * Channels Tx output power
 */
static int8_t ChannelsTxPower = LORAMAC_DEFAULT_TX_POWER;

/*!
 * Channels datarate
 */
static int8_t ChannelsDatarate = LORAMAC_DEFAULT_DATARATE;

/*!
 * Channels default datarate
 */
static int8_t ChannelsDefaultDatarate = LORAMAC_DEFAULT_DATARATE;

/*!
 * Number of uplink messages repetitions [1:15] (unconfirmed messages only)
 */
static uint8_t ChannelsNbRep = 1;

/*!
 * Uplink messages repetitions counter
 */
static uint8_t ChannelsNbRepCounter = 0;

/*!
 * Maximum duty cycle
 * \remark Possibility to shutdown the device.
 */
static uint8_t MaxDCycle = 0;

/*!
 * Agregated duty cycle management
 */
static uint16_t AggregatedDCycle;
static TimerTime_t AggregatedLastTxDoneTime;
static TimerTime_t AggregatedTimeOff;

/*!
 * Enables/Disables duty cycle management (Test only)
 */
static bool DutyCycleOn;

/*!
 * Current channel index
 */
static uint8_t Channel;

/*!
 * LoRaMac internal states
 */
enum LoRaMacState_e
{
    MAC_IDLE          = 0x00000000,
    MAC_TX_RUNNING    = 0x00000001,
    MAC_RX            = 0x00000002,
    MAC_ACK_REQ       = 0x00000004,
    MAC_ACK_RETRY     = 0x00000008,
    MAC_CHANNEL_CHECK = 0x00000010,
};

/*!
 * LoRaMac internal state
 */
uint32_t LoRaMacState = MAC_IDLE;

/*!
 * LoRaMac timer used to check the LoRaMacState (runs every second)
 */
static TimerEvent_t MacStateCheckTimer;

/*!
 * LoRaMac upper layer event functions
 */
static LoRaMacCallbacks_t *LoRaMacCallbacks;

/*!
 * LoRaMac notification event flags
 */
LoRaMacEventFlags_t LoRaMacEventFlags;

/*!
 * LoRaMac notification event info
 */
LoRaMacEventInfo_t LoRaMacEventInfo;

/*!
 * LoRaMac channel check timer
 */
static TimerEvent_t ChannelCheckTimer;

/*!
 * LoRaMac duty cycle delayed Tx timer
 */
static TimerEvent_t TxDelayedTimer;

/*!
 * LoRaMac reception windows timers
 */
static TimerEvent_t RxWindowTimer1;
static TimerEvent_t RxWindowTimer2;

/*!
 * LoRaMac reception windows delay from end of Tx
 */
static uint32_t ReceiveDelay1;
static uint32_t ReceiveDelay2;
static uint32_t JoinAcceptDelay1;
static uint32_t JoinAcceptDelay2;

/*!
 * LoRaMac reception windows delay
 * \remark normal frame: RxWindowXDelay = ReceiveDelayX - RADIO_WAKEUP_TIME
 *         join frame  : RxWindowXDelay = JoinAcceptDelayX - RADIO_WAKEUP_TIME
 */
static uint32_t RxWindow1Delay;
static uint32_t RxWindow2Delay;

/*!
 * LoRaMac maximum time a reception window stays open
 */
static uint32_t MaxRxWindow;

/*!
 * Acknowledge timeout timer. Used for packet retransmissions.
 */
static TimerEvent_t AckTimeoutTimer;

/*!
 * Number of trials to get a frame acknowledged
 */
static uint8_t AckTimeoutRetries = 1;

/*!
 * Number of trials to get a frame acknowledged
 */
static uint8_t AckTimeoutRetriesCounter = 1;

/*!
 * Indicates if the AckTimeout timer has expired or not
 */
static bool AckTimeoutRetry = false;

/*!
 * Last transmission time on air
 */
TimerTime_t TxTimeOnAir = 0;

/*!
 * Function to be executed on Radio Tx Done event
 */
static void OnRadioTxDone( void );

/*!
 * Function to be executed on Radio Rx Done event
 */
static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );

/*!
 * Function executed on Radio Tx Timeout event
 */
static void OnRadioTxTimeout( void );

/*!
 * Function executed on Radio Rx error event
 */
static void OnRadioRxError( void );

/*!
 * Function executed on Radio Rx Timeout event
 */
static void OnRadioRxTimeout( void );

/*!
 * Function executed on Resend Frame timer event.
 */
static void OnMacStateCheckTimerEvent( void );

/*!
 * Function executed on duty cycle delayed Tx  timer event
 */
static void OnTxDelayedTimerEvent( void );

/*!
 * Function executed on channel check timer event
 */
static void OnChannelCheckTimerEvent( void );

/*!
 * Function executed on first Rx window timer event
 */
static void OnRxWindow1TimerEvent( void );

/*!
 * Function executed on second Rx window timer event
 */
static void OnRxWindow2TimerEvent( void );

/*!
 * Function executed on AckTimeout timer event
 */
static void OnAckTimeoutTimerEvent( void );

/*!
 * Radio events function pointer
 */
static RadioEvents_t RadioEvents;

/*!
 * \brief Validates if the payload fits into the frame, taking the datarate
 *        into account.
 *
 * \details Refer to chapter 4.3.2 of the LoRaWAN specification, v1.0
 *
 * \param lenN Length of the application payload. The length depends on the
 *             datarate and is region specific
 *
 * \param datarate Current datarate
 *
 * \retval [false: payload does not fit into the frame, true: payload fits into
 *          the frame]
 */
static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate );

#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*!
 * \brief Counts the number of enabled 125 kHz channels in the channel mask.
 *        This function can only be applied to US915 band.
 *
 * \param channelsMask Pointer to the first element of the channel mask
 *
 * \retval Number of enabled channels in the channel mask
 */
static uint8_t CountNbEnabled125kHzChannels( uint16_t *channelsMask );
#endif

/*!
 * \brief Limits the Tx power according to the number of enabled channels
 *
 * \retval Returns the maximum valid tx power
 */
static int8_t LimitTxPower( int8_t txPower );

/*!
 * Searches and set the next random available channel
 *
 * \retval status  Function status [0: OK, 1: Unable to find a free channel]
 */
static uint8_t LoRaMacSetNextChannel( void )
{
    uint8_t i = 0;
    uint8_t j = 0;
    uint8_t k = 0;
    uint8_t nbEnabledChannels = 0;
    uint8_t enabledChannels[LORA_MAX_NB_CHANNELS];
    TimerTime_t curTime = TimerGetCurrentTime( );

    memset1( enabledChannels, 0, LORA_MAX_NB_CHANNELS );

    // Update Aggregated duty cycle
    if( AggregatedTimeOff < ( curTime - AggregatedLastTxDoneTime ) )
    {
        AggregatedTimeOff = 0;
    }

    // Update bands Time OFF
    TimerTime_t minTime = ( TimerTime_t )( -1 );
    for( i = 0; i < LORA_MAX_NB_BANDS; i++ )
    {
        if( DutyCycleOn == true )
        {
            if( Bands[i].TimeOff < ( curTime - Bands[i].LastTxDoneTime ) )
            {
                Bands[i].TimeOff = 0;
            }
            if( Bands[i].TimeOff != 0 )
            {
                minTime = MIN( Bands[i].TimeOff, minTime );
            }
        }
        else
        {
            minTime = 0;
            Bands[i].TimeOff = 0;
        }
    }

    // Search how many channels are enabled
    for( i = 0, k = 0; i < LORA_MAX_NB_CHANNELS; i += 16, k++ )
    {
        for( j = 0; j < 16; j++ )
        {
            if( ( ChannelsMask[k] & ( 1 << j ) ) != 0 )
            {
                if( Channels[i + j].Frequency == 0 )
                { // Check if the channel is enabled
                    continue;
                }
                if( ( ( Channels[i + j].DrRange.Fields.Min <= ChannelsDatarate ) &&
                      ( ChannelsDatarate <= Channels[i + j].DrRange.Fields.Max ) ) == false )
                { // Check if the current channel selection supports the given datarate
                    continue;
                }
                if( Bands[Channels[i + j].Band].TimeOff > 0 )
                { // Check if the band is available for transmission
                    continue;
                }
                if( AggregatedTimeOff > 0 )
                { // Check if there is time available for transmission
                    continue;
                }
                enabledChannels[nbEnabledChannels++] = i + j;
            }
        }
    }
    if( nbEnabledChannels > 0 )
    {
        Channel = enabledChannels[randr( 0, nbEnabledChannels - 1 )];
        LoRaMacState &= ~MAC_CHANNEL_CHECK;
        TimerStop( &ChannelCheckTimer );
        return 0;
    }
    // No free channel found. 
    // Check again
    if( ( LoRaMacState & MAC_CHANNEL_CHECK ) == 0 )
    {
        TimerSetValue( &ChannelCheckTimer, minTime );
        TimerStart( &ChannelCheckTimer );
        LoRaMacState |= MAC_CHANNEL_CHECK;
    }
    return 1;
}

/*
 * TODO: Add documentation
 */
void OnChannelCheckTimerEvent( void )
{
    TimerStop( &ChannelCheckTimer );
    
    LoRaMacState &= ~MAC_CHANNEL_CHECK;
    if( LoRaMacSetNextChannel( ) == 0 )
    {
        if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
        {
           LoRaMacSendFrameOnChannel( Channels[Channel] );
        }
    }
}

/*!
 * Adds a new MAC command to be sent.
 *
 * \Remark MAC layer internal function
 *
 * \param [in] cmd MAC command to be added
 *                 [MOTE_MAC_LINK_CHECK_REQ,
 *                  MOTE_MAC_LINK_ADR_ANS,
 *                  MOTE_MAC_DUTY_CYCLE_ANS,
 *                  MOTE_MAC_RX2_PARAM_SET_ANS,
 *                  MOTE_MAC_DEV_STATUS_ANS
 *                  MOTE_MAC_NEW_CHANNEL_ANS]
 * \param [in] p1  1st parameter ( optional depends on the command )
 * \param [in] p2  2nd parameter ( optional depends on the command )
 *
 * \retval status  Function status [0: OK, 1: Unknown command, 2: Busy]
 */
static uint8_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 )
{
    uint8_t status = 2; // Busy

    switch( cmd )
    {
        case MOTE_MAC_LINK_CHECK_REQ:
            if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // No payload for this command
                status = 0; // OK
            }
            break;
        case MOTE_MAC_LINK_ADR_ANS:
            if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // Margin
                MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
                status = 0; // OK
            }
            break;
        case MOTE_MAC_DUTY_CYCLE_ANS:
            if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // No payload for this answer
                status = 0; // OK
            }
            break;
        case MOTE_MAC_RX_PARAM_SETUP_ANS:
            if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // Status: Datarate ACK, Channel ACK
                MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
                status = 0; // OK
            }
            break;
        case MOTE_MAC_DEV_STATUS_ANS:
            if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 2 ) )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // 1st byte Battery
                // 2nd byte Margin
                MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
                MacCommandsBuffer[MacCommandsBufferIndex++] = p2;
                status = 0; // OK
            }
            break;
        case MOTE_MAC_NEW_CHANNEL_ANS:
            if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // Status: Datarate range OK, Channel frequency OK
                MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
                status = 0; // OK
            }
            break;
        case MOTE_MAC_RX_TIMING_SETUP_ANS:
            if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
            {
                MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
                // No payload for this answer
                status = 0; // OK
            }
            break;
        default:
            return 1; // Unknown command
    }
    if( status == 0 )
    {
        MacCommandsInNextTx = true;
    }
    return status;
}

// TODO: Add Documentation
static void LoRaMacNotify( LoRaMacEventFlags_t *flags, LoRaMacEventInfo_t *info )
{
    if( ( LoRaMacCallbacks != NULL ) && ( LoRaMacCallbacks->MacEvent != NULL ) )
    {
        LoRaMacCallbacks->MacEvent( flags, info );
    }
    flags->Value = 0;
}

void LoRaMacInit( LoRaMacCallbacks_t *callbacks )
{
    LoRaMacCallbacks = callbacks;

    LoRaMacEventFlags.Value = 0;
    
    LoRaMacEventInfo.TxAckReceived = false;
    LoRaMacEventInfo.TxNbRetries = 0;
    LoRaMacEventInfo.TxDatarate = 7;
    LoRaMacEventInfo.RxPort = 1;
    LoRaMacEventInfo.RxBuffer = NULL;
    LoRaMacEventInfo.RxBufferSize = 0;
    LoRaMacEventInfo.RxRssi = 0;
    LoRaMacEventInfo.RxSnr = 0;
    LoRaMacEventInfo.Energy = 0;
    LoRaMacEventInfo.DemodMargin = 0;
    LoRaMacEventInfo.NbGateways = 0;
    LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;
   
    LoRaMacDeviceClass = CLASS_A;
    
    UpLinkCounter = 1;
    DownLinkCounter = 0;
    
    IsLoRaMacNetworkJoined = false;
    LoRaMacState = MAC_IDLE;

#if defined( USE_BAND_433 )
    ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_780 )
    ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_868 )
    ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_915 )
    ChannelsMask[0] = 0xFFFF;
    ChannelsMask[1] = 0xFFFF;
    ChannelsMask[2] = 0xFFFF;
    ChannelsMask[3] = 0xFFFF;
    ChannelsMask[4] = 0x00FF;
    ChannelsMask[5] = 0x0000;
#elif defined( USE_BAND_915_HYBRID )
    ChannelsMask[0] = 0x00FF;
    ChannelsMask[1] = 0x0000;
    ChannelsMask[2] = 0x0000;
    ChannelsMask[3] = 0x0000;
    ChannelsMask[4] = 0x0001;
    ChannelsMask[5] = 0x0000;
#else
    #error "Please define a frequency band in the compiler options."
#endif

#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
    // 125 kHz channels
    for( uint8_t i = 0; i < LORA_MAX_NB_CHANNELS - 8; i++ )
    {
        Channels[i].Frequency = 902.3e6 + i * 200e3;
        Channels[i].DrRange.Value = ( DR_3 << 4 ) | DR_0;
        Channels[i].Band = 0;
    }
    // 500 kHz channels
    for( uint8_t i = LORA_MAX_NB_CHANNELS - 8; i < LORA_MAX_NB_CHANNELS; i++ )
    {
        Channels[i].Frequency = 903.0e6 + ( i - ( LORA_MAX_NB_CHANNELS - 8 ) ) * 1.6e6;
        Channels[i].DrRange.Value = ( DR_4 << 4 ) | DR_4;
        Channels[i].Band = 0;
    }
#endif

    ChannelsTxPower = LORAMAC_DEFAULT_TX_POWER;
    ChannelsDefaultDatarate = ChannelsDatarate = LORAMAC_DEFAULT_DATARATE;
    ChannelsNbRep = 1;
    ChannelsNbRepCounter = 0;
    
    MaxDCycle = 0;
    AggregatedDCycle = 1;
    AggregatedLastTxDoneTime = 0;
    AggregatedTimeOff = 0;

#if defined( USE_BAND_433 )
    DutyCycleOn = false;
#elif defined( USE_BAND_780 )
    DutyCycleOn = false;
#elif defined( USE_BAND_868 )
    DutyCycleOn = true;
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
    DutyCycleOn = false;
#else
    #error "Please define a frequency band in the compiler options."
#endif

    MaxRxWindow = MAX_RX_WINDOW;
    ReceiveDelay1 = RECEIVE_DELAY1;
    ReceiveDelay2 = RECEIVE_DELAY2;
    JoinAcceptDelay1 = JOIN_ACCEPT_DELAY1;
    JoinAcceptDelay2 = JOIN_ACCEPT_DELAY2;

    TimerInit( &MacStateCheckTimer, OnMacStateCheckTimerEvent );
    TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );

    TimerInit( &ChannelCheckTimer, OnChannelCheckTimerEvent );
    TimerInit( &TxDelayedTimer, OnTxDelayedTimerEvent );
    TimerInit( &RxWindowTimer1, OnRxWindow1TimerEvent );
    TimerInit( &RxWindowTimer2, OnRxWindow2TimerEvent );
    TimerInit( &AckTimeoutTimer, OnAckTimeoutTimerEvent );
    
    // Initialize Radio driver
    RadioEvents.TxDone = OnRadioTxDone;
    RadioEvents.RxDone = OnRadioRxDone;
    RadioEvents.RxError = OnRadioRxError;
    RadioEvents.TxTimeout = OnRadioTxTimeout;
    RadioEvents.RxTimeout = OnRadioRxTimeout;
    Radio.Init( &RadioEvents );

    // Random seed initialization
    srand1( Radio.Random( ) );

    // Initialize channel index.
    Channel = LORA_MAX_NB_CHANNELS;

    PublicNetwork = true;
    LoRaMacSetPublicNetwork( PublicNetwork );
    Radio.Sleep( );
}

void LoRaMacSetAdrOn( bool enable )
{
    AdrCtrlOn = enable;
}

void LoRaMacInitNwkIds( uint32_t netID, uint32_t devAddr, uint8_t *nwkSKey, uint8_t *appSKey )
{
    LoRaMacNetID = netID;
    LoRaMacDevAddr = devAddr;
    LoRaMacMemCpy( nwkSKey, LoRaMacNwkSKey, 16 );
    LoRaMacMemCpy( appSKey, LoRaMacAppSKey, 16 );
    
    IsLoRaMacNetworkJoined = true;
}

void LoRaMacMulticastChannelAdd( MulticastParams_t *channelParam )
{
    // Reset downlink counter
    channelParam->DownLinkCounter = 0;
    
    if( MulticastChannels == NULL )
    {
        MulticastChannels = channelParam;
    }
    else
    {
        MulticastParams_t *cur = MulticastChannels;
        while( cur->Next != NULL )
        {
            cur = cur->Next;
        }
        cur->Next = channelParam;
    }
}

void LoRaMacMulticastChannelRemove( MulticastParams_t *channelParam )
{
    MulticastParams_t *cur = NULL;
    
    // Remove the front element
    if( MulticastChannels == channelParam )
    {
        if( MulticastChannels != NULL )
        {
            cur = MulticastChannels;
            MulticastChannels = MulticastChannels->Next;
            cur->Next = NULL;
            // Last node in the list
            if( cur == MulticastChannels )
            {
                MulticastChannels = NULL;
            }
        }
        return;
    }
    
    // Remove last element
    if( channelParam->Next == NULL )
    {
        if( MulticastChannels != NULL )
        {
            cur = MulticastChannels;
            MulticastParams_t *last = NULL;
            while( cur->Next != NULL )
            {
                last = cur;
                cur = cur->Next;
            }
            if( last != NULL )
            {
                last->Next = NULL;
            }
            // Last node in the list
            if( cur == last )
            {
                MulticastChannels = NULL;
            }
        }
        return;
    }
    
    // Remove a middle element
    cur = MulticastChannels;
    while( cur != NULL )
    {
        if( cur->Next == channelParam )
        {
            break;
        }
        cur = cur->Next;
    }
    if( cur != NULL )
    {
        MulticastParams_t *tmp = cur ->Next;
        cur->Next = tmp->Next;
        tmp->Next = NULL;
    }
}

uint8_t LoRaMacJoinReq( uint8_t *devEui, uint8_t *appEui, uint8_t *appKey )
{
    LoRaMacHeader_t macHdr;

    LoRaMacDevEui = devEui;
    LoRaMacAppEui = appEui;
    LoRaMacAppKey = appKey;
    
    macHdr.Value = 0;
    macHdr.Bits.MType        = FRAME_TYPE_JOIN_REQ;
    
    IsLoRaMacNetworkJoined = false;
    
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
    static uint8_t drSwitch = 0;
    
    if( ( ++drSwitch & 0x01 ) == 0x01 )
    {
        ChannelsDatarate = DR_0;
    }
    else
    {
        ChannelsDatarate = DR_4;
    }
#endif
    return LoRaMacSend( &macHdr, NULL, 0, NULL, 0 );
}

uint8_t LoRaMacLinkCheckReq( void )
{
    return AddMacCommand( MOTE_MAC_LINK_CHECK_REQ, 0, 0 );
}

uint8_t LoRaMacSendFrame( uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
    LoRaMacHeader_t macHdr;

    macHdr.Value = 0;

    macHdr.Bits.MType = FRAME_TYPE_DATA_UNCONFIRMED_UP;
    return LoRaMacSend( &macHdr, NULL, fPort, fBuffer, fBufferSize );
}

uint8_t LoRaMacSendConfirmedFrame( uint8_t fPort, void *fBuffer, uint16_t fBufferSize, uint8_t retries )
{
    LoRaMacHeader_t macHdr;

    if( AdrCtrlOn == false )
    {
        ChannelsDatarate = ChannelsDefaultDatarate;
    }
    AckTimeoutRetries = retries;
    AckTimeoutRetriesCounter = 1;
    
    macHdr.Value = 0;

    macHdr.Bits.MType = FRAME_TYPE_DATA_CONFIRMED_UP;
    return LoRaMacSend( &macHdr, NULL, fPort, fBuffer, fBufferSize );
}

uint8_t LoRaMacSend( LoRaMacHeader_t *macHdr, uint8_t *fOpts, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
    LoRaMacFrameCtrl_t fCtrl;

    fCtrl.Value = 0;

    fCtrl.Bits.FOptsLen      = 0;
    fCtrl.Bits.FPending      = 0;
    fCtrl.Bits.Ack           = false;
    fCtrl.Bits.AdrAckReq     = false;
    fCtrl.Bits.Adr           = AdrCtrlOn;

    if( LoRaMacSetNextChannel( ) == 0 )
    {
        return LoRaMacSendOnChannel( Channels[Channel], macHdr, &fCtrl, fOpts, fPort, fBuffer, fBufferSize );
    }
    return 5;
}

uint8_t LoRaMacPrepareFrame( ChannelParams_t channel, LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t *fOpts, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
    uint16_t i;
    uint8_t pktHeaderLen = 0;
    uint32_t mic = 0;
    
    LoRaMacBufferPktLen = 0;
    
    NodeAckRequested = false;
    
    if( fBuffer == NULL )
    {
        fBufferSize = 0;
    }
    else
    {
        if( ValidatePayloadLength( fBufferSize, ChannelsDatarate ) == false )
        {
            return 3;
        }
    }

    LoRaMacBuffer[pktHeaderLen++] = macHdr->Value;

    switch( macHdr->Bits.MType )
    {
        case FRAME_TYPE_JOIN_REQ:            
            RxWindow1Delay = JoinAcceptDelay1 - RADIO_WAKEUP_TIME;
            RxWindow2Delay = JoinAcceptDelay2 - RADIO_WAKEUP_TIME;

            LoRaMacBufferPktLen = pktHeaderLen;
        
            LoRaMacMemCpy( LoRaMacAppEui, LoRaMacBuffer + LoRaMacBufferPktLen, 8 );
            LoRaMacBufferPktLen += 8;
            LoRaMacMemCpy( LoRaMacDevEui, LoRaMacBuffer + LoRaMacBufferPktLen, 8 );
            LoRaMacBufferPktLen += 8;

            LoRaMacDevNonce = Radio.Random( );
            
            LoRaMacBuffer[LoRaMacBufferPktLen++] = LoRaMacDevNonce & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen++] = ( LoRaMacDevNonce >> 8 ) & 0xFF;

            LoRaMacJoinComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen & 0xFF, LoRaMacAppKey, &mic );
            
            LoRaMacBuffer[LoRaMacBufferPktLen++] = mic & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 8 ) & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 16 ) & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 24 ) & 0xFF;
            
            break;
        case FRAME_TYPE_DATA_CONFIRMED_UP:
            NodeAckRequested = true;
            //Intentional falltrough
        case FRAME_TYPE_DATA_UNCONFIRMED_UP:
            if( IsLoRaMacNetworkJoined == false )
            {
                return 2; // No network has been joined yet
            }
            
            RxWindow1Delay = ReceiveDelay1 - RADIO_WAKEUP_TIME;
            RxWindow2Delay = ReceiveDelay2 - RADIO_WAKEUP_TIME;

            if( fOpts == NULL )
            {
                fCtrl->Bits.FOptsLen = 0;
            }

            if( SrvAckRequested == true )
            {
                SrvAckRequested = false;
                fCtrl->Bits.Ack = 1;
            }
            
            if( fCtrl->Bits.Adr == true )
            {
                if( ChannelsDatarate == LORAMAC_MIN_DATARATE )
                {
                    AdrAckCounter = 0;
                    fCtrl->Bits.AdrAckReq = false;
                }
                else
                {
                    if( AdrAckCounter > ADR_ACK_LIMIT )
                    {
                        fCtrl->Bits.AdrAckReq = true;
                    }
                    else
                    {
                        fCtrl->Bits.AdrAckReq = false;
                    }
                    if( AdrAckCounter > ( ADR_ACK_LIMIT + ADR_ACK_DELAY ) )
                    {
                        AdrAckCounter = 0;
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
                        if( ChannelsDatarate > LORAMAC_MIN_DATARATE )
                        {
                            ChannelsDatarate--;
                        }
                        else
                        {
                            // Re-enable default channels LC1, LC2, LC3
                            ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
                        }
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
                        if( ( ChannelsDatarate > LORAMAC_MIN_DATARATE ) && ( ChannelsDatarate == DR_8 ) )
                        {
                            ChannelsDatarate = DR_4;
                        }
                        if( ChannelsDatarate > LORAMAC_MIN_DATARATE )
                        {
                            ChannelsDatarate--;
                        }
                        else
                        {
#if defined( USE_BAND_915 )
                            // Re-enable default channels
                            ChannelsMask[0] = 0xFFFF;
                            ChannelsMask[1] = 0xFFFF;
                            ChannelsMask[2] = 0xFFFF;
                            ChannelsMask[3] = 0xFFFF;
                            ChannelsMask[4] = 0x00FF;
                            ChannelsMask[5] = 0x0000;
#else // defined( USE_BAND_915_HYBRID )
                            // Re-enable default channels
                            ChannelsMask[0] = 0x00FF;
                            ChannelsMask[1] = 0x0000;
                            ChannelsMask[2] = 0x0000;
                            ChannelsMask[3] = 0x0000;
                            ChannelsMask[4] = 0x0001;
                            ChannelsMask[5] = 0x0000;
#endif
                        }
#else
    #error "Please define a frequency band in the compiler options."
#endif
                    }
                }
            }
            
            LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr ) & 0xFF;
            LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 8 ) & 0xFF;
            LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 16 ) & 0xFF;
            LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 24 ) & 0xFF;

            LoRaMacBuffer[pktHeaderLen++] = fCtrl->Value;

            LoRaMacBuffer[pktHeaderLen++] = UpLinkCounter & 0xFF;
            LoRaMacBuffer[pktHeaderLen++] = ( UpLinkCounter >> 8 ) & 0xFF;

            if( fOpts != NULL )
            {
                for( i = 0; i < fCtrl->Bits.FOptsLen; i++ )
                {
                    LoRaMacBuffer[pktHeaderLen++] = fOpts[i];
                }
            }
            if( ( MacCommandsBufferIndex + fCtrl->Bits.FOptsLen ) <= 15 )
            {
                if( MacCommandsInNextTx == true )
                {
                    fCtrl->Bits.FOptsLen += MacCommandsBufferIndex;
                    
                    // Update FCtrl field with new value of OptionsLength
                    LoRaMacBuffer[0x05] = fCtrl->Value;
                    for( i = 0; i < MacCommandsBufferIndex; i++ )
                    {
                        LoRaMacBuffer[pktHeaderLen++] = MacCommandsBuffer[i];
                    }
                }
            }
            MacCommandsInNextTx = false;
            MacCommandsBufferIndex = 0;
            
            if( ( pktHeaderLen + fBufferSize ) > LORAMAC_PHY_MAXPAYLOAD )
            {
                return 3;
            }

            if( fBuffer != NULL )
            {
                LoRaMacBuffer[pktHeaderLen++] = fPort;
                
                if( fPort == 0 )
                {
                    LoRaMacPayloadEncrypt( ( uint8_t* )fBuffer, fBufferSize, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, LoRaMacPayload );
                }
                else
                {
                    LoRaMacPayloadEncrypt( ( uint8_t* )fBuffer, fBufferSize, LoRaMacAppSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, LoRaMacPayload );
                }
                LoRaMacMemCpy( LoRaMacPayload, LoRaMacBuffer + pktHeaderLen, fBufferSize );
            }
            LoRaMacBufferPktLen = pktHeaderLen + fBufferSize;

            LoRaMacComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &mic );

            if( ( LoRaMacBufferPktLen + LORAMAC_MFR_LEN ) > LORAMAC_PHY_MAXPAYLOAD )
            {
                return 3;
            }
            LoRaMacBuffer[LoRaMacBufferPktLen + 0] = mic & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen + 1] = ( mic >> 8 ) & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen + 2] = ( mic >> 16 ) & 0xFF;
            LoRaMacBuffer[LoRaMacBufferPktLen + 3] = ( mic >> 24 ) & 0xFF;
            
            LoRaMacBufferPktLen += LORAMAC_MFR_LEN;
            break;
        default:
            return 4;
    }

    return 0;
}

uint8_t LoRaMacSendFrameOnChannel( ChannelParams_t channel )
{
    LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
    LoRaMacEventInfo.TxDatarate = ChannelsDatarate;

    ChannelsTxPower = LimitTxPower( ChannelsTxPower );

    Radio.SetChannel( channel.Frequency );
    Radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );

#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
    if( ChannelsDatarate == DR_7 )
    { // High Speed FSK channel
        Radio.SetTxConfig( MODEM_FSK, TxPowers[ChannelsTxPower], 25e3, 0, Datarates[ChannelsDatarate] * 1e3, 0, 5, false, true, 0, 0, false, 3e6 );
        TxTimeOnAir = Radio.TimeOnAir( MODEM_FSK, LoRaMacBufferPktLen );
    }
    else if( ChannelsDatarate == DR_6 )
    { // High speed LoRa channel
        Radio.SetTxConfig( MODEM_LORA, TxPowers[ChannelsTxPower], 0, 1, Datarates[ChannelsDatarate], 1, 8, false, true, 0, 0, false, 3e6 );
        TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
    }
    else
    { // Normal LoRa channel
        Radio.SetTxConfig( MODEM_LORA, TxPowers[ChannelsTxPower], 0, 0, Datarates[ChannelsDatarate], 1, 8, false, true, 0, 0, false, 3e6 );
        TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
    }
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
    if( ChannelsDatarate >= DR_4 )
    { // High speed LoRa channel BW500 kHz
        Radio.SetTxConfig( MODEM_LORA, TxPowers[ChannelsTxPower], 0, 2, Datarates[ChannelsDatarate], 1, 8, false, true, 0, 0, false, 3e6 );
        TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
    }
    else
    { // Normal LoRa channel
        Radio.SetTxConfig( MODEM_LORA, TxPowers[ChannelsTxPower], 0, 0, Datarates[ChannelsDatarate], 1, 8, false, true, 0, 0, false, 3e6 );
        TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
    }
#else
    #error "Please define a frequency band in the compiler options."
#endif

    if( MaxDCycle == 255 )
    {
        return 6;
    }
    if( MaxDCycle == 0 )
    {
        AggregatedTimeOff = 0;
    }

    LoRaMacState |= MAC_TX_RUNNING;
    // Starts the MAC layer status check timer
    TimerStart( &MacStateCheckTimer );
    
    if( MAX( Bands[channel.Band].TimeOff, AggregatedTimeOff ) > ( TimerGetCurrentTime( ) ) )
    {
        // Schedule transmission
        TimerSetValue( &TxDelayedTimer, MAX( Bands[channel.Band].TimeOff, AggregatedTimeOff ) );
        TimerStart( &TxDelayedTimer );
    }
    else
    {
        // Send now
        Radio.Send( LoRaMacBuffer, LoRaMacBufferPktLen );
    }
    return 0;
}


void OnTxDelayedTimerEvent( void )
{
    TimerStop( &TxDelayedTimer );
    Radio.Send( LoRaMacBuffer, LoRaMacBufferPktLen );
}

uint8_t LoRaMacSendOnChannel( ChannelParams_t channel, LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t *fOpts, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
    uint8_t status = 0;
    
    if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
    {
        return 1; // MAC is busy transmitting a previous frame
    }

    status = LoRaMacPrepareFrame( channel, macHdr, fCtrl, fOpts, fPort, fBuffer, fBufferSize );
    if( status != 0 )
    {
        return status;
    }

    LoRaMacEventInfo.TxNbRetries = 0;
    LoRaMacEventInfo.TxAckReceived = false;

    return LoRaMacSendFrameOnChannel( channel );
}

static void LoRaMacProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize )
{
    while( macIndex < commandsSize )
    {
        // Decode Frame MAC commands
        switch( payload[macIndex++] )
        {
            case SRV_MAC_LINK_CHECK_ANS:
                LoRaMacEventFlags.Bits.LinkCheck = 1;
                LoRaMacEventInfo.DemodMargin = payload[macIndex++];
                LoRaMacEventInfo.NbGateways = payload[macIndex++];
                break;
            case SRV_MAC_LINK_ADR_REQ:
                {
                    uint8_t status = 0x07;
                    uint16_t chMask;
                    int8_t txPower = 0;
                    int8_t datarate = 0;
                    uint8_t nbRep = 0;
                    uint8_t chMaskCntl = 0;
                    uint16_t channelsMask[6] = { 0, 0, 0, 0, 0, 0 };
                    
                    // Initialize local copy of the channels mask array
                    for( uint8_t i = 0; i < 6; i++ )
                    {
                        channelsMask[i] = ChannelsMask[i];
                    }
                    datarate = payload[macIndex++];
                    txPower = datarate & 0x0F;
                    datarate = ( datarate >> 4 ) & 0x0F;

                    if( ( AdrCtrlOn == false ) && 
                        ( ( ChannelsDatarate != datarate ) || ( ChannelsTxPower != txPower ) ) )
                    { // ADR disabled don't handle ADR requests if server tries to change datarate or txpower
                        // Answer the server with fail status
                        // Power ACK     = 0
                        // Data rate ACK = 0
                        // Channel mask  = 0
                        AddMacCommand( MOTE_MAC_LINK_ADR_ANS, 0, 0 );
                        macIndex += 3;  // Skip over the remaining bytes of the request
                        break;
                    }
                    chMask = ( uint16_t )payload[macIndex++];
                    chMask |= ( uint16_t )payload[macIndex++] << 8;

                    nbRep = payload[macIndex++];
                    chMaskCntl = ( nbRep >> 4 ) & 0x07;
                    nbRep &= 0x0F;
                    if( nbRep == 0 )
                    {
                        nbRep = 1;
                    }
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
                    if( ( chMaskCntl == 0 ) && ( chMask == 0 ) )
                    {
                        status &= 0xFE; // Channel mask KO
                    }
                    else if( ( chMaskCntl >= 1 ) && ( chMaskCntl <= 5 ) )
                    {
                        // RFU
                        status &= 0xFE; // Channel mask KO
                    }
                    else
                    {
                        for( uint8_t i = 0; i < LORA_MAX_NB_CHANNELS; i++ )
                        {
                            if( chMaskCntl == 6 )
                            {
                                if( Channels[i].Frequency != 0 )
                                {
                                    chMask |= 1 << i;
                                }
                            }
                            else
                            {
                                if( ( ( chMask & ( 1 << i ) ) != 0 ) &&
                                    ( Channels[i].Frequency == 0 ) )
                                {// Trying to enable an undefined channel
                                    status &= 0xFE; // Channel mask KO
                                }
                            }
                        }
                        channelsMask[0] = chMask;
                    }
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
                    if( chMaskCntl == 6 )
                    {
                        // Enable all 125 kHz channels
                        for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS - 8; i += 16, k++ )
                        {
                            for( uint8_t j = 0; j < 16; j++ )
                            {
                                if( Channels[i + j].Frequency != 0 )
                                {
                                    channelsMask[k] |= 1 << j;
                                }
                            }
                        }
                    }
                    else if( chMaskCntl == 7 )
                    {
                        // Disable all 125 kHz channels
                        channelsMask[0] = 0x0000;
                        channelsMask[1] = 0x0000;
                        channelsMask[2] = 0x0000;
                        channelsMask[3] = 0x0000;
                    }
                    else if( chMaskCntl == 5 )
                    {
                        // RFU
                        status &= 0xFE; // Channel mask KO
                    }
                    else
                    {
                        for( uint8_t i = 0; i < 16; i++ )
                        {
                            if( ( ( chMask & ( 1 << i ) ) != 0 ) &&
                                ( Channels[chMaskCntl * 16 + i].Frequency == 0 ) )
                            {// Trying to enable an undefined channel
                                status &= 0xFE; // Channel mask KO
                            }
                        }
                        channelsMask[chMaskCntl] = chMask;
                        
                        if( CountNbEnabled125kHzChannels( channelsMask ) < 6 )
                        {
                            status &= 0xFE; // Channel mask KO
                        }
                    }
#else
    #error "Please define a frequency band in the compiler options."
#endif
                    if( ( ( datarate < LORAMAC_MIN_DATARATE ) ||
                          ( datarate > LORAMAC_MAX_DATARATE ) ) == true )
                    {
                        status &= 0xFD; // Datarate KO
                    }

                    //
                    // Remark MaxTxPower = 0 and MinTxPower = 5
                    //
                    if( ( ( LORAMAC_MAX_TX_POWER <= txPower ) &&
                          ( txPower <= LORAMAC_MIN_TX_POWER ) ) == false )
                    {
                        status &= 0xFB; // TxPower KO
                    }
                    if( ( status & 0x07 ) == 0x07 )
                    {
                        ChannelsDatarate = datarate;
                        ChannelsTxPower = txPower;
#if defined( USE_BAND_915_HYBRID )
                        ChannelsMask[0] = channelsMask[0] & 0x00FF;
                        ChannelsMask[1] = channelsMask[1] & 0x0000;
                        ChannelsMask[2] = channelsMask[2] & 0x0000;
                        ChannelsMask[3] = channelsMask[3] & 0x0000;
                        ChannelsMask[4] = channelsMask[4] & 0x0001;
                        ChannelsMask[5] = channelsMask[5] & 0x0000;
#else
                        ChannelsMask[0] = channelsMask[0];
                        ChannelsMask[1] = channelsMask[1];
                        ChannelsMask[2] = channelsMask[2];
                        ChannelsMask[3] = channelsMask[3];
                        ChannelsMask[4] = channelsMask[4];
                        ChannelsMask[5] = channelsMask[5];
#endif
                        ChannelsNbRep = nbRep;
                    }
                    AddMacCommand( MOTE_MAC_LINK_ADR_ANS, status, 0 );
                }
                break;
            case SRV_MAC_DUTY_CYCLE_REQ:
                MaxDCycle = payload[macIndex++];
                AggregatedDCycle = 1 << MaxDCycle;
                AddMacCommand( MOTE_MAC_DUTY_CYCLE_ANS, 0, 0 );
                break;
            case SRV_MAC_RX_PARAM_SETUP_REQ:
                {
                    uint8_t status = 0x07;
                    int8_t datarate = 0;
                    int8_t drOffset = 0;
                    uint32_t freq = 0;
                
                    drOffset = ( payload[macIndex] >> 4 ) & 0x07;
                    datarate = payload[macIndex] & 0x0F;
                    macIndex++;
                    freq = ( uint32_t )payload[macIndex++];
                    freq |= ( uint32_t )payload[macIndex++] << 8;
                    freq |= ( uint32_t )payload[macIndex++] << 16;
                    freq *= 100;
                    
                    if( Radio.CheckRfFrequency( freq ) == false )
                    {
                        status &= 0xFE; // Channel frequency KO
                    }
                    
                    if( ( ( datarate < LORAMAC_MIN_DATARATE ) ||
                          ( datarate > LORAMAC_MAX_DATARATE ) ) == true )
                    {
                        status &= 0xFD; // Datarate KO
                    }

                    if( ( ( drOffset < LORAMAC_MIN_RX1_DR_OFFSET ) ||
                          ( drOffset > LORAMAC_MAX_RX1_DR_OFFSET ) ) == true )
                    {
                        status &= 0xFB; // Rx1DrOffset range KO
                    }
                    
                    if( ( status & 0x07 ) == 0x07 )
                    {
                        Rx2Channel.Datarate = datarate;
                        Rx2Channel.Frequency = freq;
                        Rx1DrOffset = drOffset;
                    }
                    AddMacCommand( MOTE_MAC_RX_PARAM_SETUP_ANS, status, 0 );
                }
                break;
            case SRV_MAC_DEV_STATUS_REQ:
                {
                    uint8_t batteryLevel = BAT_LEVEL_NO_MEASURE;
                    if( ( LoRaMacCallbacks != NULL ) && ( LoRaMacCallbacks->GetBatteryLevel != NULL ) )
                    {
                        batteryLevel = LoRaMacCallbacks->GetBatteryLevel( );
                    }
                    AddMacCommand( MOTE_MAC_DEV_STATUS_ANS, batteryLevel, LoRaMacEventInfo.RxSnr );
                }
                break;
            case SRV_MAC_NEW_CHANNEL_REQ:
                {
                    uint8_t status = 0x03;
                    int8_t channelIndex = 0;
                    ChannelParams_t chParam;
                    
                    channelIndex = payload[macIndex++];
                    chParam.Frequency = ( uint32_t )payload[macIndex++];
                    chParam.Frequency |= ( uint32_t )payload[macIndex++] << 8;
                    chParam.Frequency |= ( uint32_t )payload[macIndex++] << 16;
                    chParam.Frequency *= 100;
                    chParam.DrRange.Value = payload[macIndex++];
                    
                    if( ( channelIndex < 3 ) || ( channelIndex > LORA_MAX_NB_CHANNELS ) )
                    {
                        status &= 0xFE; // Channel frequency KO
                    }
                
                    if( Radio.CheckRfFrequency( chParam.Frequency ) == false )
                    {
                        status &= 0xFE; // Channel frequency KO
                    }

                    if( ( chParam.DrRange.Fields.Min > chParam.DrRange.Fields.Max ) ||
                        ( ( ( LORAMAC_MIN_DATARATE <= chParam.DrRange.Fields.Min ) &&
                            ( chParam.DrRange.Fields.Min <= LORAMAC_MAX_DATARATE ) ) == false ) ||
                        ( ( ( LORAMAC_MIN_DATARATE <= chParam.DrRange.Fields.Max ) &&
                            ( chParam.DrRange.Fields.Max <= LORAMAC_MAX_DATARATE ) ) == false ) )
                    {
                        status &= 0xFD; // Datarate range KO
                    }
                    if( ( status & 0x03 ) == 0x03 )
                    {
                        LoRaMacSetChannel( channelIndex, chParam );
                    }
                    AddMacCommand( MOTE_MAC_NEW_CHANNEL_ANS, status, 0 );
                }
                break;
            case SRV_MAC_RX_TIMING_SETUP_REQ:
                {
                    uint8_t delay = payload[macIndex++] & 0x0F;
                    
                    if( delay == 0 )
                    {
                        delay++;
                    }
                    ReceiveDelay1 = delay * 1e6;
                    ReceiveDelay2 = ReceiveDelay1 + 1e6;
                    AddMacCommand( MOTE_MAC_RX_TIMING_SETUP_ANS, 0, 0 );
                }
                break;
            default:
                // Unknown command. ABORT MAC commands processing
                return;
        }
    }
}

/*!
 * Function to be executed on Tx Done event
 */
static void OnRadioTxDone( void )
{
    TimerTime_t curTime = TimerGetCurrentTime( );
    if( LoRaMacDeviceClass != CLASS_C )
    {
        Radio.Sleep( );
    }
    else
    {
        OnRxWindow2TimerEvent( );
    }

    // Update Band Time OFF
    Bands[Channels[Channel].Band].LastTxDoneTime = curTime;
    if( DutyCycleOn == true )
    {
        Bands[Channels[Channel].Band].TimeOff = TxTimeOnAir * Bands[Channels[Channel].Band].DCycle - TxTimeOnAir;
    }
    else
    {
        Bands[Channels[Channel].Band].TimeOff = 0;
    }
    // Update Agregated Time OFF
    AggregatedLastTxDoneTime = curTime;
    AggregatedTimeOff = AggregatedTimeOff + ( TxTimeOnAir * AggregatedDCycle - TxTimeOnAir );

    if( IsRxWindowsEnabled == true )
    {
        TimerSetValue( &RxWindowTimer1, RxWindow1Delay );
        TimerStart( &RxWindowTimer1 );
        if( LoRaMacDeviceClass != CLASS_C )
        {
            TimerSetValue( &RxWindowTimer2, RxWindow2Delay );
            TimerStart( &RxWindowTimer2 );
        }
        if( ( LoRaMacDeviceClass == CLASS_C ) || ( NodeAckRequested == true ) )
        {
            TimerSetValue( &AckTimeoutTimer, RxWindow2Delay + ACK_TIMEOUT +
                                             randr( -ACK_TIMEOUT_RND, ACK_TIMEOUT_RND ) );
            TimerStart( &AckTimeoutTimer );
        }
    }
    else
    {
        LoRaMacEventFlags.Bits.Tx = 1;
        LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;
    }
    
    if( NodeAckRequested == false )
    {
        LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;
        ChannelsNbRepCounter++;
    }
}

/*!
 * Function to be executed on Rx Done event
 */
static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
{
    LoRaMacHeader_t macHdr;
    LoRaMacFrameCtrl_t fCtrl;

    uint8_t pktHeaderLen = 0;
    uint32_t address = 0;
    uint8_t appPayloadStartIndex = 0;
    uint8_t port = 0xFF;
    uint8_t frameLen = 0;
    uint32_t mic = 0;
    uint32_t micRx = 0;
    
    uint16_t sequenceCounter = 0;
    uint16_t sequenceCounterPrev = 0;
    uint16_t sequenceCounterDiff = 0;
    uint32_t downLinkCounter = 0;

    MulticastParams_t *curMulticastParams = NULL;
    uint8_t *nwkSKey = LoRaMacNwkSKey;
    uint8_t *appSKey = LoRaMacAppSKey;
    
    bool isMicOk = false;

    if( LoRaMacDeviceClass != CLASS_C )
    {
        Radio.Sleep( );
    }
    else
    {
        if( LoRaMacEventFlags.Bits.RxSlot == 0 )
        {
            OnRxWindow2TimerEvent( );
        }
    }
    TimerStop( &RxWindowTimer2 );

    macHdr.Value = payload[pktHeaderLen++];
    
    switch( macHdr.Bits.MType )
    {
        case FRAME_TYPE_JOIN_ACCEPT:
            if( IsLoRaMacNetworkJoined == true )
            {
                break;
            }
            LoRaMacJoinDecrypt( payload + 1, size - 1, LoRaMacAppKey, LoRaMacRxPayload + 1 );

            LoRaMacRxPayload[0] = macHdr.Value;

            LoRaMacJoinComputeMic( LoRaMacRxPayload, size - LORAMAC_MFR_LEN, LoRaMacAppKey, &mic );
            
            micRx |= ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN];
            micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 1] << 8 );
            micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 2] << 16 );
            micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 3] << 24 );
            
            if( micRx == mic )
            {
                LoRaMacEventFlags.Bits.Rx = 1;
                LoRaMacEventInfo.RxSnr = snr;
                LoRaMacEventInfo.RxRssi = rssi;

                LoRaMacJoinComputeSKeys( LoRaMacAppKey, LoRaMacRxPayload + 1, LoRaMacDevNonce, LoRaMacNwkSKey, LoRaMacAppSKey );

                LoRaMacNetID = ( uint32_t )LoRaMacRxPayload[4];
                LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[5] << 8 );
                LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[6] << 16 );
                
                LoRaMacDevAddr = ( uint32_t )LoRaMacRxPayload[7];
                LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[8] << 8 );
                LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[9] << 16 );
                LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[10] << 24 );
                
                // DLSettings
                Rx1DrOffset = ( LoRaMacRxPayload[11] >> 4 ) & 0x07;
                Rx2Channel.Datarate = LoRaMacRxPayload[11] & 0x0F;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
                /*
                 * WARNING: To be removed once Semtech server implementation
                 *          is corrected.
                 */
                if( Rx2Channel.Datarate == DR_3 )
                {
                    Rx2Channel.Datarate = DR_8;
                }
#endif
                // RxDelay
                ReceiveDelay1 = ( LoRaMacRxPayload[12] & 0x0F );
                if( ReceiveDelay1 == 0 )
                {
                    ReceiveDelay1 = 1;
                }
                ReceiveDelay1 *= 1e6;
                ReceiveDelay2 = ReceiveDelay1 + 1e6;

#if !( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
                //CFList
                if( ( size - 1 ) > 16 )
                {
                    ChannelParams_t param;
                    param.DrRange.Value = ( DR_5 << 4 ) | DR_0;

                    for( uint8_t i = 3, j = 0; i < ( 5 + 3 ); i++, j += 3 )
                    {
                        param.Frequency = ( ( uint32_t )LoRaMacRxPayload[13 + j] | ( ( uint32_t )LoRaMacRxPayload[14 + j] << 8 ) | ( ( uint32_t )LoRaMacRxPayload[15 + j] << 16 ) ) * 100;
                        LoRaMacSetChannel( i, param );
                    }
                }
#endif
                LoRaMacEventFlags.Bits.JoinAccept = 1;
                IsLoRaMacNetworkJoined = true;
                ChannelsDatarate = ChannelsDefaultDatarate;
                LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;
            }
            else
            {
                LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL;
            }
            break;
        case FRAME_TYPE_DATA_CONFIRMED_DOWN:
        case FRAME_TYPE_DATA_UNCONFIRMED_DOWN:
            {
                address = payload[pktHeaderLen++];
                address |= ( (uint32_t)payload[pktHeaderLen++] << 8 );
                address |= ( (uint32_t)payload[pktHeaderLen++] << 16 );
                address |= ( (uint32_t)payload[pktHeaderLen++] << 24 );

                if( address != LoRaMacDevAddr )
                {
                    curMulticastParams = MulticastChannels;
                    while( curMulticastParams != NULL )
                    {
                        if( address == curMulticastParams->Address )
                        {
                            LoRaMacEventFlags.Bits.Multicast = 1;
                            nwkSKey = curMulticastParams->NwkSKey;
                            appSKey = curMulticastParams->AppSKey;
                            downLinkCounter = curMulticastParams->DownLinkCounter;
                            break;
                        }
                        curMulticastParams = curMulticastParams->Next;
                    }
                    if( LoRaMacEventFlags.Bits.Multicast == 0 )
                    {
                        // We are not the destination of this frame.
                        LoRaMacEventFlags.Bits.Tx = 1;
                        LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_ADDRESS_FAIL;
                        LoRaMacState &= ~MAC_TX_RUNNING;
                        return;
                    }
                }
                else
                {
                    LoRaMacEventFlags.Bits.Multicast = 0;
                    nwkSKey = LoRaMacNwkSKey;
                    appSKey = LoRaMacAppSKey;
                    downLinkCounter = DownLinkCounter;
                }
                
                if( LoRaMacDeviceClass != CLASS_A )
                {
                    LoRaMacState |= MAC_RX;
                    // Starts the MAC layer status check timer
                    TimerStart( &MacStateCheckTimer );
                }
                fCtrl.Value = payload[pktHeaderLen++];
                
                sequenceCounter = ( uint16_t )payload[pktHeaderLen++];
                sequenceCounter |= ( uint16_t )payload[pktHeaderLen++] << 8;

                appPayloadStartIndex = 8 + fCtrl.Bits.FOptsLen;

                micRx |= ( uint32_t )payload[size - LORAMAC_MFR_LEN];
                micRx |= ( (uint32_t)payload[size - LORAMAC_MFR_LEN + 1] << 8 );
                micRx |= ( (uint32_t)payload[size - LORAMAC_MFR_LEN + 2] << 16 );
                micRx |= ( (uint32_t)payload[size - LORAMAC_MFR_LEN + 3] << 24 );

                sequenceCounterPrev = ( uint16_t )downLinkCounter;
                sequenceCounterDiff = ( sequenceCounter - sequenceCounterPrev );

                if( sequenceCounterDiff < ( 1 << 15 ) )
                {
                    downLinkCounter += sequenceCounterDiff;
                    LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounter, &mic );
                    if( micRx == mic )
                    {
                        isMicOk = true;
                    }
                }
                else
                {
                    // check for downlink counter roll-over
                    uint32_t  downLinkCounterTmp = downLinkCounter + 0x10000 + ( int16_t )sequenceCounterDiff;
                    LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounterTmp, &mic );
                    if( micRx == mic )
                    {
                        isMicOk = true;
                        downLinkCounter = downLinkCounterTmp;
                    }
                }

                if( isMicOk == true )
                {
                    LoRaMacEventFlags.Bits.Rx = 1;
                    LoRaMacEventInfo.RxSnr = snr;
                    LoRaMacEventInfo.RxRssi = rssi;
                    LoRaMacEventInfo.RxBufferSize = 0;
                    AdrAckCounter = 0;

                    // Update 32 bits downlink counter
                    if( LoRaMacEventFlags.Bits.Multicast == 1 )
                    {
                        curMulticastParams->DownLinkCounter = downLinkCounter;
                    }
                    else
                    {
                        DownLinkCounter = downLinkCounter;
                    }

                    if( macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_DOWN )
                    {
                        SrvAckRequested = true;
                    }
                    else
                    {
                        SrvAckRequested = false;
                    }
                    // Check if the frame is an acknowledgement
                    if( fCtrl.Bits.Ack == 1 )
                    {
                        LoRaMacEventInfo.TxAckReceived = true;

                        // Stop the AckTimeout timer as no more retransmissions 
                        // are needed.
                        TimerStop( &AckTimeoutTimer );
                    }
                    else
                    {
                        LoRaMacEventInfo.TxAckReceived = false;
                        if( AckTimeoutRetriesCounter > AckTimeoutRetries )
                        {
                            // Stop the AckTimeout timer as no more retransmissions 
                            // are needed.
                            TimerStop( &AckTimeoutTimer );
                        }
                    }
                    
                    if( fCtrl.Bits.FOptsLen > 0 )
                    {
                        // Decode Options field MAC commands
                        LoRaMacProcessMacCommands( payload, 8, appPayloadStartIndex );
                    }
                    
                    if( ( ( size - 4 ) - appPayloadStartIndex ) > 0 )
                    {
                        port = payload[appPayloadStartIndex++];
                        frameLen = ( size - 4 ) - appPayloadStartIndex;
                        
                        if( port == 0 )
                        {
                            LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
                                                   frameLen,
                                                   nwkSKey,
                                                   address,
                                                   DOWN_LINK,
                                                   downLinkCounter,
                                                   LoRaMacRxPayload );
                            
                            // Decode frame payload MAC commands
                            LoRaMacProcessMacCommands( LoRaMacRxPayload, 0, frameLen );
                        }
                        else
                        {
                            LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
                                                   frameLen,
                                                   appSKey,
                                                   address,
                                                   DOWN_LINK,
                                                   downLinkCounter,
                                                   LoRaMacRxPayload );

                            LoRaMacEventFlags.Bits.RxData = 1;
                            LoRaMacEventInfo.RxPort = port;
                            LoRaMacEventInfo.RxBuffer = LoRaMacRxPayload;
                            LoRaMacEventInfo.RxBufferSize = frameLen;
                        }
                    }

                    LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;
                }
                else
                {
                    LoRaMacEventInfo.TxAckReceived = false;
                    
                    LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL;
                    LoRaMacState &= ~MAC_TX_RUNNING;
                    if( NodeAckRequested == true )
                    {
                        OnAckTimeoutTimerEvent( );
                    }
                }
            }
            break;
        case FRAME_TYPE_PROPRIETARY:
            //Intentional falltrough
        default:
            LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
            LoRaMacState &= ~MAC_TX_RUNNING;
            break;
    }
    LoRaMacEventFlags.Bits.Tx = 1;
}

/*!
 * Function executed on Radio Tx Timeout event
 */
static void OnRadioTxTimeout( void )
{
    if( LoRaMacDeviceClass != CLASS_C )
    {
        Radio.Sleep( );
    }
    else
    {
        OnRxWindow2TimerEvent( );
    }
    
    LoRaMacEventFlags.Bits.Tx = 1;
    LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
}

/*!
 * Function executed on Radio Rx Timeout event
 */
static void OnRadioRxTimeout( void )
{
    if( LoRaMacDeviceClass != CLASS_C )
    {
        Radio.Sleep( );
    }
    else
    {
        OnRxWindow2TimerEvent( );
    }
    if( LoRaMacEventFlags.Bits.RxSlot == 1 )
    {
        LoRaMacEventFlags.Bits.Tx = 1;
        LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
    }
}

/*!
 * Function executed on Radio Rx Error event
 */
static void OnRadioRxError( void )
{
    if( LoRaMacDeviceClass != CLASS_C )
    {
        Radio.Sleep( );
    }
    else
    {
        OnRxWindow2TimerEvent( );
    }
    if( LoRaMacEventFlags.Bits.RxSlot == 1 )
    {
        LoRaMacEventFlags.Bits.Tx = 1;
        LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
    }
}

/*!
 * Initializes and opens the reception window
 *
 * \param [IN] freq window channel frequency
 * \param [IN] datarate window channel datarate
 * \param [IN] bandwidth window channel bandwidth
 * \param [IN] timeout window channel timeout
 */
void LoRaMacRxWindowSetup( uint32_t freq, int8_t datarate, uint32_t bandwidth, uint16_t timeout, bool rxContinuous )
{
    uint8_t downlinkDatarate = Datarates[datarate];
    RadioModems_t modem;

    if( Radio.GetStatus( ) == RF_IDLE )
    {
        Radio.SetChannel( freq );
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
        if( datarate == DR_7 )
        {
            modem = MODEM_FSK;
            Radio.SetRxConfig( MODEM_FSK, 50e3, downlinkDatarate * 1e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, rxContinuous );
        }
        else
        {
            modem = MODEM_LORA;
            Radio.SetRxConfig( MODEM_LORA, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, 0, 0, true, rxContinuous );
        }
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
        modem = MODEM_LORA;
        Radio.SetRxConfig( MODEM_LORA, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, 0, 0, true, rxContinuous );
#endif
        if( RepeaterSupport == true )
        {
            Radio.SetMaxPayloadLength( modem, MaxPayloadOfDatarateRepeater[datarate] );
        }
        else
        {
            Radio.SetMaxPayloadLength( modem, MaxPayloadOfDatarate[datarate] );
        }

        if( rxContinuous == false )
        {
            Radio.Rx( MaxRxWindow );
        }
        else
        {
            Radio.Rx( 0 ); // Continuous mode
        }
    }
}

/*!
 * Function executed on first Rx window timer event
 */
static void OnRxWindow1TimerEvent( void )
{
    uint16_t symbTimeout = 5; // DR_2, DR_1, DR_0
    int8_t datarate = 0;
    uint32_t bandwidth = 0; // LoRa 125 kHz

    TimerStop( &RxWindowTimer1 );
    LoRaMacEventFlags.Bits.RxSlot = 0;

    if( LoRaMacDeviceClass == CLASS_C )
    {
        Radio.Standby( );
    }
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
    datarate = ChannelsDatarate - Rx1DrOffset;
    if( datarate < 0 )
    {
        datarate = DR_0;
    }

    // For higher datarates, we increase the number of symbols generating a Rx Timeout
    if( datarate >= DR_3 )
    { // DR_6, DR_5, DR_4, DR_3
        symbTimeout = 8;
    }
    if( datarate == DR_6 )
    {// LoRa 250 kHz
        bandwidth  = 1;
    }
    LoRaMacRxWindowSetup( Channels[Channel].Frequency, datarate, bandwidth, symbTimeout, false );
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
    datarate = datarateOffsets[ChannelsDatarate][Rx1DrOffset];
    if( datarate < 0 )
    {
        datarate = DR_0;
    }
    // For higher datarates, we increase the number of symbols generating a Rx Timeout
    if( datarate > DR_0 )
    { // DR_1, DR_2, DR_3, DR_4, DR_8, DR_9, DR_10, DR_11, DR_12, DR_13
        symbTimeout = 8;
    }
    if( datarate >= DR_4 )
    {// LoRa 500 kHz
        bandwidth  = 2;
    }
    LoRaMacRxWindowSetup( 923.3e6 + ( Channel % 8 ) * 600e3, datarate, bandwidth, symbTimeout, false );
#else
    #error "Please define a frequency band in the compiler options."
#endif
}

/*!
 * Function executed on second Rx window timer event
 */
static void OnRxWindow2TimerEvent( void )
{
    uint16_t symbTimeout = 5; // DR_2, DR_1, DR_0
    uint32_t bandwidth = 0; // LoRa 125 kHz

    TimerStop( &RxWindowTimer2 );
    LoRaMacEventFlags.Bits.RxSlot = 1;

    if( NodeAckRequested == true )
    {
        TimerSetValue( &AckTimeoutTimer, ACK_TIMEOUT + randr( -ACK_TIMEOUT_RND, ACK_TIMEOUT_RND ) );
        TimerStart( &AckTimeoutTimer );
    }

#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
    // For higher datarates, we increase the number of symbols generating a Rx Timeout
    if( Rx2Channel.Datarate >= DR_3 )
    { // DR_6, DR_5, DR_4, DR_3
        symbTimeout = 8;
    }
    if( Rx2Channel.Datarate == DR_6 )
    {// LoRa 250 kHz
        bandwidth  = 1;
    }
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
    // For higher datarates, we increase the number of symbols generating a Rx Timeout
    if( Rx2Channel.Datarate > DR_0 )
    { // DR_1, DR_2, DR_3, DR_4, DR_8, DR_9, DR_10, DR_11, DR_12, DR_13
        symbTimeout = 8;
    }
    if( Rx2Channel.Datarate >= DR_4 )
    {// LoRa 500 kHz
        bandwidth  = 2;
    }
#else
    #error "Please define a frequency band in the compiler options."
#endif
    if( LoRaMacDeviceClass != CLASS_C )
    {
        LoRaMacRxWindowSetup( Rx2Channel.Frequency, Rx2Channel.Datarate, bandwidth, symbTimeout, false );
    }
    else
    {
        LoRaMacRxWindowSetup( Rx2Channel.Frequency, Rx2Channel.Datarate, bandwidth, symbTimeout, true );
    }
}

/*!
 * Function executed on MacStateCheck timer event
 */
static void OnMacStateCheckTimerEvent( void )
{
    TimerStop( &MacStateCheckTimer );

    if( LoRaMacEventFlags.Bits.Tx == 1 )
    {
        if( NodeAckRequested == false )
        {
            if( LoRaMacEventFlags.Bits.JoinAccept == true )
            {
                // Join messages aren't repeated automatically
                ChannelsNbRepCounter = ChannelsNbRep;
                UpLinkCounter = 0;
            }
            if( ChannelsNbRepCounter >= ChannelsNbRep )
            {
                ChannelsNbRepCounter = 0;

                LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;

                AdrAckCounter++;
                if( IsUpLinkCounterFixed == false )
                {
                    UpLinkCounter++;
                }

                LoRaMacState &= ~MAC_TX_RUNNING;
            }
            else
            {
                LoRaMacEventFlags.Bits.Tx = 0;
                // Sends the same frame again
                if( LoRaMacSetNextChannel( ) == 0 )
                {
                    LoRaMacSendFrameOnChannel( Channels[Channel] );
                }
            }
        }

        if( LoRaMacEventFlags.Bits.Rx == 1 )
        {
            if( ( LoRaMacEventInfo.TxAckReceived == true ) || ( AckTimeoutRetriesCounter > AckTimeoutRetries ) )
            {
                AckTimeoutRetry = false;
                if( IsUpLinkCounterFixed == false )
                {
                    UpLinkCounter++;
                }
                LoRaMacEventInfo.TxNbRetries = AckTimeoutRetriesCounter;
                
                LoRaMacState &= ~MAC_TX_RUNNING;
            }
        }
        
        if( ( AckTimeoutRetry == true ) && ( ( LoRaMacState & MAC_CHANNEL_CHECK ) == 0 ) )
        {
            AckTimeoutRetry = false;
            if( ( AckTimeoutRetriesCounter < AckTimeoutRetries ) && ( AckTimeoutRetriesCounter <= MAX_ACK_RETRIES ) )
            {
                AckTimeoutRetriesCounter++;
                
                if( ( AckTimeoutRetriesCounter % 2 ) == 1 )
                {
                    ChannelsDatarate = MAX( ChannelsDatarate - 1, LORAMAC_MIN_DATARATE );
                }
                LoRaMacEventFlags.Bits.Tx = 0;
                // Sends the same frame again
                if( LoRaMacSetNextChannel( ) == 0 )
                {
                    LoRaMacSendFrameOnChannel( Channels[Channel] );
                }
            }
            else
            {
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
                // Re-enable default channels LC1, LC2, LC3
                ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
#elif defined( USE_BAND_915 )
                // Re-enable default channels
                ChannelsMask[0] = 0xFFFF;
                ChannelsMask[1] = 0xFFFF;
                ChannelsMask[2] = 0xFFFF;
                ChannelsMask[3] = 0xFFFF;
                ChannelsMask[4] = 0x00FF;
                ChannelsMask[5] = 0x0000;
#elif defined( USE_BAND_915_HYBRID )
                // Re-enable default channels
                ChannelsMask[0] = 0x00FF;
                ChannelsMask[1] = 0x0000;
                ChannelsMask[2] = 0x0000;
                ChannelsMask[3] = 0x0000;
                ChannelsMask[4] = 0x0001;
                ChannelsMask[5] = 0x0000;
#else
    #error "Please define a frequency band in the compiler options."
#endif
                LoRaMacState &= ~MAC_TX_RUNNING;
                
                LoRaMacEventInfo.TxAckReceived = false;
                LoRaMacEventInfo.TxNbRetries = AckTimeoutRetriesCounter;
                if( IsUpLinkCounterFixed == false )
                {
                    UpLinkCounter++;
                }
            }
        }
    }
    // Handle reception for Class B and Class C
    if( ( LoRaMacState & MAC_RX ) == MAC_RX )
    {
        LoRaMacState &= ~MAC_RX;
    }
    if( LoRaMacState == MAC_IDLE )
    {
        LoRaMacNotify( &LoRaMacEventFlags, &LoRaMacEventInfo );
        LoRaMacEventFlags.Bits.Tx = 0;
    }
    else
    {
        // Operation not finished restart timer
        TimerStart( &MacStateCheckTimer );
    }
}

static void OnAckTimeoutTimerEvent( void )
{
    TimerStop( &AckTimeoutTimer );

    AckTimeoutRetry = true;
    LoRaMacState &= ~MAC_ACK_REQ;
}

/*!
 * ============================================================================
 * = LoRaMac utility functions                                                =
 * ============================================================================
 */
static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate )
{
    bool payloadSizeOk = false;
    uint8_t maxN = 0;

    // Get the maximum payload length
    if( RepeaterSupport == true )
    {
        maxN = MaxPayloadOfDatarateRepeater[datarate];
    }
    else
    {
        maxN = MaxPayloadOfDatarate[datarate];
    }

    // Validation of the application payload size
    if( lenN <= maxN )
    {
        payloadSizeOk = true;
    }

    return payloadSizeOk;
}

#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
static uint8_t CountNbEnabled125kHzChannels( uint16_t *channelsMask )
{
    uint8_t nb125kHzChannels = 0;

    for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS - 8; i += 16, k++ )
    {
        for( uint8_t j = 0; j < 16; j++ )
        {// Verify if the channel is active
            if( ( channelsMask[k] & ( 1 << j ) ) == ( 1 << j ) )
            {
                nb125kHzChannels++;
            }
        }
    }

    return nb125kHzChannels;
}
#endif

static int8_t LimitTxPower( int8_t txPower )
{
    int8_t resultTxPower = txPower;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
    if( ( ChannelsDatarate == DR_4 ) ||
        ( ( ChannelsDatarate >= DR_8 ) && ( ChannelsDatarate <= DR_13 ) ) )
    {// Limit tx power to max 26dBm
        resultTxPower =  MAX( txPower, TX_POWER_26_DBM );
    }
    else
    {
        if( CountNbEnabled125kHzChannels( ChannelsMask ) < 50 )
        {// Limit tx power to max 21dBm
            resultTxPower = MAX( txPower, TX_POWER_20_DBM );
        }
    }
#endif
    return resultTxPower;
}

void LoRaMacChannelRemove( uint8_t id )
{
    if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
    {
        return;
    }
#if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
    if( id < 64 )
    {
        if( CountNbEnabled125kHzChannels( ChannelsMask ) <= 6 )
        {
            return;
        }
    }
#else
    if( id < 3 )
    {
        return;
    }
#endif

    uint8_t index = 0;
    index = id / 16;

    if( ( index > 4 ) || ( id >= LORA_MAX_NB_CHANNELS ) )
    {
        return;
    }

    // Deactivate channel
    ChannelsMask[index] &= ~( 1 << ( id % 16 ) );

    return;
}

/*!
 * ============================================================================
 * = LoRaMac setup functions                                                  =
 * ============================================================================
 */
void LoRaMacSetDeviceClass( DeviceClass_t deviceClass )
{
    LoRaMacDeviceClass = deviceClass;
}

void LoRaMacSetPublicNetwork( bool enable )
{
    PublicNetwork = enable;
    Radio.SetModem( MODEM_LORA );
    if( PublicNetwork == true )
    {
        // Change LoRa modem SyncWord
        Radio.Write( REG_LR_SYNCWORD, LORA_MAC_PUBLIC_SYNCWORD );
    }
    else
    {
        // Change LoRa modem SyncWord
        Radio.Write( REG_LR_SYNCWORD, LORA_MAC_PRIVATE_SYNCWORD );
    }
}

void LoRaMacSetChannel( uint8_t id, ChannelParams_t params )
{
    params.Band = 0;
    Channels[id] = params;
    // Activate the newly created channel
    if( id < 16 )
    {
        ChannelsMask[0] |= 1 << id;
    }
    else if( id < 32 )
    {
        ChannelsMask[1] |= 1 << ( id - 16 );
    }
    else if( id < 48 )
    {
        ChannelsMask[2] |= 1 << ( id - 32 );
    }
    else if( id < 64 )
    {
        ChannelsMask[3] |= 1 << ( id - 48 );
    }
    else if( id < 72 )
    {
        ChannelsMask[4] |= 1 << ( id - 64 );
    }
    else
    {
        // Don't activate the channel
    }
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 )
    Channels[id].Band = 0; // 1% duty cycle on EU433 and CN780 bands
#elif defined( USE_BAND_868 )
    if( ( Channels[id].Frequency >= 865000000 ) && ( Channels[id].Frequency <= 868000000 ) )
    {
        if( Channels[id].Band != BAND_G1_0 )
        {
            Channels[id].Band = BAND_G1_0;
        }
    }
    else if( ( Channels[id].Frequency > 868000000 ) && ( Channels[id].Frequency <= 868600000 ) )
    {
        if( Channels[id].Band != BAND_G1_1 )
        {
            Channels[id].Band = BAND_G1_1;
        }
    }
    else if( ( Channels[id].Frequency >= 868700000 ) && ( Channels[id].Frequency <= 869200000 ) )
    {
        if( Channels[id].Band != BAND_G1_2 )
        {
            Channels[id].Band = BAND_G1_2;
        }
    }
    else if( ( Channels[id].Frequency >= 869400000 ) && ( Channels[id].Frequency <= 869650000 ) )
    {
        if( Channels[id].Band != BAND_G1_3 )
        {
            Channels[id].Band = BAND_G1_3;
        }
    }
    else if( ( Channels[id].Frequency >= 869700000 ) && ( Channels[id].Frequency <= 870000000 ) )
    {
        if( Channels[id].Band != BAND_G1_4 )
        {
            Channels[id].Band = BAND_G1_4;
        }
    }
    else
    {
        Channels[id].Frequency = 0;
        Channels[id].DrRange.Value = 0;
    }
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
    Channels[id].Band = 0; // No duty cycle on US915 band
#else
    #error "Please define a frequency band in the compiler options."
#endif
    // Check if it is a valid channel
    if( Channels[id].Frequency == 0 )
    {
        LoRaMacChannelRemove( id );
    }
}

void LoRaMacSetRx2Channel( Rx2ChannelParams_t param )
{
    Rx2Channel = param;
}

void LoRaMacSetChannelsTxPower( int8_t txPower )
{
    if( ( txPower >= LORAMAC_MAX_TX_POWER ) &&
        ( txPower <= LORAMAC_MIN_TX_POWER ) )
    {
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
        int8_t txPwr = LimitTxPower( txPower );
        if( txPwr == txPower )
        {
            ChannelsTxPower = txPower;
        }
#else
        ChannelsTxPower = txPower;
#endif
    }
}

void LoRaMacSetChannelsDatarate( int8_t datarate )
{
    ChannelsDefaultDatarate = ChannelsDatarate = datarate;
}

void LoRaMacSetChannelsMask( uint16_t *mask )
{
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
    if( ( CountNbEnabled125kHzChannels( mask ) < 6 ) &&
        ( CountNbEnabled125kHzChannels( mask ) > 0 ) )
    {

    }
    else
    {
        LoRaMacMemCpy( (uint8_t* ) mask,
                       ( uint8_t* ) ChannelsMask, 10 );
    }
#else
    if( ( mask[0] & 0x0007 ) != 0x0007 )
    {
    }
    else
    {
        LoRaMacMemCpy( ( uint8_t* ) mask,
                       ( uint8_t* ) ChannelsMask, 2 );
    }
#endif
}

void LoRaMacSetChannelsNbRep( uint8_t nbRep )
{
    if( nbRep < 1 )
    {
        nbRep = 1;
    }
    if( nbRep > 15 )
    {
        nbRep = 15;
    }
    ChannelsNbRep = nbRep;
}

void LoRaMacSetMaxRxWindow( uint32_t delay )
{
    MaxRxWindow = delay;
}

void LoRaMacSetReceiveDelay1( uint32_t delay )
{
    ReceiveDelay1 = delay;
}

void LoRaMacSetReceiveDelay2( uint32_t delay )
{
    ReceiveDelay2 = delay;
}

void LoRaMacSetJoinAcceptDelay1( uint32_t delay )
{
    JoinAcceptDelay1 = delay;
}

void LoRaMacSetJoinAcceptDelay2( uint32_t delay )
{
    JoinAcceptDelay2 = delay;
}

uint32_t LoRaMacGetUpLinkCounter( void )
{
    return UpLinkCounter;
}

uint32_t LoRaMacGetDownLinkCounter( void )
{
    return DownLinkCounter;
}

/*!
 * ============================================================================
 * = LoRaMac test functions                                                   =
 * ============================================================================
 */
void LoRaMacTestSetDutyCycleOn( bool enable )
{
    DutyCycleOn = enable;
}

void LoRaMacTestRxWindowsOn( bool enable )
{
    IsRxWindowsEnabled = enable;
}

void LoRaMacTestSetMic( uint16_t upLinkCounter )
{
    UpLinkCounter = upLinkCounter;
    IsUpLinkCounterFixed = true;
}