Simple driver for DWM1000 modules.
Diff: DW1000.cpp
- Revision:
- 0:2c8820705cdd
- Child:
- 2:12a2907957b8
diff -r 000000000000 -r 2c8820705cdd DW1000.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DW1000.cpp Fri Jan 29 10:47:13 2016 +0000 @@ -0,0 +1,383 @@ +#include "DW1000.h" + +// Change this depending on whether damaged or heatlhy DWM1000 modules are used. +const bool DWM1000_DAMAGED = true; + +//#include "PC.h" +//static PC pc(USBTX, USBRX, 115200); // USB UART Terminal + +DW1000::DW1000(SPI& spi, InterruptIn& irq, PinName CS, PinName RESET) : spi(spi), cs(CS), irq(irq), reset(RESET) { + irq.rise(this, &DW1000::ISR); + + setCallbacks(NULL, NULL); + + select(); + deselect(); // Chip must be deselected first + resetAll(); // we do a soft reset of the DW1000 everytime the driver starts + + // Configuration TODO: make method for that + // User Manual "2.5.5 Default Configurations that should be modified" p. 22 + //Those values are for the standard mode (6.8Mbps, 5, 16Mhz, 32 Symbols) and are INCOMPLETE! +// writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870); +// writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907); +// writeRegister32(DW1000_DRX_CONF, 0x08, 0x311A002D); +// writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD); +// writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); +// writeRegister32(DW1000_TX_POWER, 0, 0x0E082848); +// writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0); +// writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0); +// writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6); + + + //Those values are for the 110kbps mode (5, 16MHz, 1024 Symbols) and are quite complete + writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870); //AGC_TUNE1 for 16MHz PRF + writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907); //AGC_TUNE2 (Universal) + writeRegister16(DW1000_AGC_CTRL, 0x12, 0x0055); //AGC_TUNE3 (Universal) + + writeRegister16(DW1000_DRX_CONF, 0x02, 0x000A); //DRX_TUNE0b for 110kbps + writeRegister16(DW1000_DRX_CONF, 0x04, 0x0087); //DRX_TUNE1a for 16MHz PRF + writeRegister16(DW1000_DRX_CONF, 0x06, 0x0064); //DRX_TUNE1b for 110kbps & > 1024 symbols + writeRegister32(DW1000_DRX_CONF, 0x08, 0x351A009A); //PAC size for 1024 symbols preamble & 16MHz PRF + //writeRegister32(DW1000_DRX_CONF, 0x08, 0x371A011D); //PAC size for 2048 symbols preamble + + writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD); //LDE_CFG1 + writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); //LDE_CFG2 for 16MHz PRF + + writeRegister32(DW1000_TX_POWER, 0, 0x28282828); //Power for channel 5 + + writeRegister8(DW1000_RF_CONF, 0x0B, 0xD8); //RF_RXCTRLH for channel 5 + writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0); //RF_TXCTRL for channel 5 + + writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0); //TC_PGDELAY for channel 5 + + writeRegister32 (DW1000_FS_CTRL, 0x07, 0x0800041D); //FS_PLLCFG for channel 5 + writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6); //FS_PLLTUNE for channel 5 + + loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned off or there's receiving malfunction see User Manual LDELOAD on p22 & p158 + + // 110kbps CAUTION: a lot of other registers have to be set for an optimized operation on 110kbps + writeRegister16(DW1000_TX_FCTRL, 1, 0x0800 | 0x0100 | 0x0080); // use 1024 symbols preamble (0x0800) (previously 2048 - 0x2800), 16MHz pulse repetition frequency (0x0100), 110kbps bit rate (0x0080) see p.69 of DW1000 User Manual + writeRegister8(DW1000_SYS_CFG, 2, 0x44); // enable special receiving option for 110kbps (disable smartTxPower)!! (0x44) see p.64 of DW1000 User Manual [DO NOT enable 1024 byte frames (0x03) becuase it generates disturbance of ranging don't know why...] + + writeRegister16(DW1000_TX_ANTD, 0, 16384); // set TX and RX Antenna delay to neutral because we calibrate afterwards + writeRegister16(DW1000_LDE_CTRL, 0x1804, 16384); // = 2^14 a quarter of the range of the 16-Bit register which corresponds to zero calibration in a round trip (TX1+RX2+TX2+RX1) + + writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error + + irq.enable_irq(); +} + +void DW1000::setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)) { + bool RX = false; + bool TX = false; + if (callbackRX) { + this->callbackRX.attach(callbackRX); + RX = true; + } + if (callbackTX) { + this->callbackTX.attach(callbackTX); + TX = true; + } + setInterrupt(RX, TX); +} + +uint32_t DW1000::getDeviceID() { + uint32_t result; + readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4); + return result; +} + +uint64_t DW1000::getEUI() { + uint64_t result; + readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8); + return result; +} + +void DW1000::setEUI(uint64_t EUI) { + writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8); +} + +float DW1000::getVoltage() { + uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57 + writeRegister(DW1000_RF_CONF, 0x11, buffer, 2); + writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1); + writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1); + writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1); + readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature + float Voltage = buffer[5] * 0.0057 + 2.3; + //float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration + return Voltage; +} + +uint64_t DW1000::getStatus() { + return readRegister40(DW1000_SYS_STATUS, 0); +} + +bool DW1000::hasReceivedFrame() { + uint64_t status = getStatus(); + return status & 0x4000; +} + +void DW1000::clearReceivedFlag() { + writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits +} + +bool DW1000::hasSentFrame() { + uint64_t status = getStatus(); + return status & 0x80; +} + +void DW1000::clearSentFlag() { + writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits +} + +uint64_t DW1000::getRXTimestamp() { + return readRegister40(DW1000_RX_TIME, 0); +} + +uint64_t DW1000::getTXTimestamp() { + return readRegister40(DW1000_TX_TIME, 0); +} + +uint16_t DW1000::getStdNoise() { + return readRegister16(DW1000_RX_FQUAL, 0x00); +} + +uint16_t DW1000::getPACC() { + uint32_t v = readRegister32(DW1000_RX_FINFO, 0x00); + v >>= 20; + return static_cast<uint16_t>(v); +} + +uint16_t DW1000::getFPINDEX() { + return readRegister16(DW1000_RX_TIME, 0x05); +} + +uint16_t DW1000::getFPAMPL1() { + return readRegister16(DW1000_RX_TIME, 0x07); +} + +uint16_t DW1000::getFPAMPL2() { + return readRegister16(DW1000_RX_FQUAL, 0x02); +} + +uint16_t DW1000::getFPAMPL3() { + return readRegister16(DW1000_RX_FQUAL, 0x04); +} + +uint16_t DW1000::getCIRPWR() { + return readRegister16(DW1000_RX_FQUAL, 0x06); +} + +uint8_t DW1000::getPRF() { + uint16_t prf_mask = (0x1 << 19) | (0x1 << 18); + uint16_t prf = readRegister16(DW1000_CHAN_CTRL, 0x00); + prf >> 18; + prf &= 0x03; + return static_cast<uint8_t>(prf); +} + +void DW1000::sendString(char* message) { + sendFrame((uint8_t*)message, strlen(message)+1); +} + +void DW1000::receiveString(char* message) { + readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)message, getFramelength()); // get data from buffer +} + +void DW1000::sendFrame(uint8_t* message, uint16_t length) { + //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor] + if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames + writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer + + uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame + length += 2; // including 2 CRC Bytes + length = ((backup & 0xFC) << 8) | (length & 0x03FF); + writeRegister16(DW1000_TX_FCTRL, 0, length); + + stopTRX(); // stop receiving + writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit + startRX(); // enable receiver again +} + +void DW1000::sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp) { + //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor] + if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames + writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer + + uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame + length += 2; // including 2 CRC Bytes + length = ((backup & 0xFC) << 8) | (length & 0x03FF); + writeRegister16(DW1000_TX_FCTRL, 0, length); + + writeRegister40(DW1000_DX_TIME, 0, TxTimestamp); //write the timestamp on which to send the message + + stopTRX(); // stop receiving + writeRegister8(DW1000_SYS_CTRL, 0, 0x02 | 0x04); // trigger sending process by setting the TXSTRT and TXDLYS bit + startRX(); // enable receiver again +} + +void DW1000::startRX() { + writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit +} + +void DW1000::stopTRX() { + writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode +} + +// PRIVATE Methods ------------------------------------------------------------------------------------ +void DW1000::loadLDE() { // initialise LDE algorithm LDELOAD User Manual p22 + writeRegister16(DW1000_PMSC, 0, 0x0301); // set clock to XTAL so OTP is reliable + writeRegister16(DW1000_OTP_IF, 0x06, 0x8000); // set LDELOAD bit in OTP + wait_us(150); + writeRegister16(DW1000_PMSC, 0, 0x0200); // recover to PLL clock +} + +void DW1000::resetRX() { + writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset + writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset +} + +void DW1000::hardwareReset(PinName reset_pin) { + // DWM1000 RESET logic. + if (DWM1000_DAMAGED) { + // The following code works for damaged DWM1000 modules. + // IMPORTANT: This will damage healthy DWM1000 modules! + DigitalInOut reset(reset_pin); + reset.output(); + reset = 1; + wait_ms(100); + reset = 0; + wait_ms(100); + reset = 1; + wait_ms(100); + } else { + // The following code works for healthy DWM1000 modules + DigitalInOut reset(reset_pin); + reset.output(); + reset = 0; + wait_ms(100); + reset.input(); + } +} + +void DW1000::resetAll() { + if (reset.is_connected()) { + reset = 1; + wait_ms(100); + reset = 0; + wait_ms(100); + reset = 1; + wait_ms(100); + } + + writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL + writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset + wait_us(10); // wait for PLL to lock + writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset +} + + +void DW1000::setInterrupt(bool RX, bool TX) { + writeRegister16(DW1000_SYS_MASK, 0, RX*0x4000 | TX*0x0080); // RX good frame 0x4000, TX done 0x0080 +} + +void DW1000::ISR() { + uint64_t status = getStatus(); + if (status & 0x4000) { // a frame was received + callbackRX.call(); + writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits + } + if (status & 0x80) { // sending complete + callbackTX.call(); + writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits + } +} + +uint16_t DW1000::getFramelength() { + uint16_t framelength = readRegister16(DW1000_RX_FINFO, 0); // get framelength + framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes + return framelength; +} + +// SPI Interface ------------------------------------------------------------------------------------ +uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) { + uint8_t result; + readRegister(reg, subaddress, &result, 1); + return result; +} + +uint16_t DW1000::readRegister16(uint8_t reg, uint16_t subaddress) { + uint16_t result; + readRegister(reg, subaddress, (uint8_t*)&result, 2); + return result; +} + +uint32_t DW1000::readRegister32(uint8_t reg, uint16_t subaddress) { + uint32_t result; + readRegister(reg, subaddress, (uint8_t*)&result, 4); + return result; +} + +uint64_t DW1000::readRegister40(uint8_t reg, uint16_t subaddress) { + uint64_t result; + readRegister(reg, subaddress, (uint8_t*)&result, 5); + result &= 0xFFFFFFFFFF; // only 40-Bit + return result; +} + +void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) { + writeRegister(reg, subaddress, &buffer, 1); +} + +void DW1000::writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer) { + writeRegister(reg, subaddress, (uint8_t*)&buffer, 2); +} + +void DW1000::writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer) { + writeRegister(reg, subaddress, (uint8_t*)&buffer, 4); +} + +void DW1000::writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer) { + writeRegister(reg, subaddress, (uint8_t*)&buffer, 5); +} + +void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { + setupTransaction(reg, subaddress, false); + for(int i=0; i<length; i++) // get data + buffer[i] = spi.write(0x00); + deselect(); +} + +void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { + setupTransaction(reg, subaddress, true); + for(int i=0; i<length; i++) // put data + spi.write(buffer[i]); + deselect(); +} + +void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) { + reg |= (write * DW1000_WRITE_FLAG); // set read/write flag + select(); + if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte + spi.write(reg | DW1000_SUBADDRESS_FLAG); + if (subaddress > 0x7F) { // sub address too long, we need to set flag and send third header byte + spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); // and + spi.write((uint8_t)(subaddress >> 7)); + } else { + spi.write((uint8_t)subaddress); + } + } else { + spi.write(reg); // say which register address we want to access + } +} + +void DW1000::select() { // always called to start an SPI transmission + irq.disable_irq(); + cs = 0; // set Cable Select pin low to start transmission +} + +void DW1000::deselect() { // always called to end an SPI transmission + cs = 1; // set Cable Select pin high to stop transmission + irq.enable_irq(); +}