Simple driver for DWM1000 modules.
DW1000.cpp@6:028891b5f03b, 2016-04-04 (annotated)
- Committer:
- bhepp
- Date:
- Mon Apr 04 11:19:26 2016 +0000
- Revision:
- 6:028891b5f03b
- Parent:
- 5:c34ebc7f650c
Removed automatic retransmission and added clearing sent flag before delayed transmission.
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
bhepp | 2:12a2907957b8 | 1 | // Adapted from Matthias Grob & Manuel Stalder - ETH Zürich - 2015 |
bhepp | 2:12a2907957b8 | 2 | |
bhepp | 0:2c8820705cdd | 3 | #include "DW1000.h" |
bhepp | 0:2c8820705cdd | 4 | |
bhepp | 0:2c8820705cdd | 5 | // Change this depending on whether damaged or heatlhy DWM1000 modules are used. |
bhepp | 0:2c8820705cdd | 6 | const bool DWM1000_DAMAGED = true; |
bhepp | 5:c34ebc7f650c | 7 | //const bool DWM1000_DAMAGED = false; |
bhepp | 0:2c8820705cdd | 8 | |
bhepp | 0:2c8820705cdd | 9 | //#include "PC.h" |
bhepp | 0:2c8820705cdd | 10 | //static PC pc(USBTX, USBRX, 115200); // USB UART Terminal |
bhepp | 0:2c8820705cdd | 11 | |
bhepp | 5:c34ebc7f650c | 12 | DW1000::DW1000(SPI& spi, InterruptIn* irq, PinName CS, PinName RESET) |
bhepp | 2:12a2907957b8 | 13 | : irq(irq), spi(spi), cs(CS), reset(RESET) { |
bhepp | 5:c34ebc7f650c | 14 | if (irq != NULL) { |
bhepp | 5:c34ebc7f650c | 15 | irq->rise(this, &DW1000::ISR); |
bhepp | 5:c34ebc7f650c | 16 | } |
bhepp | 0:2c8820705cdd | 17 | |
bhepp | 0:2c8820705cdd | 18 | setCallbacks(NULL, NULL); |
bhepp | 0:2c8820705cdd | 19 | |
bhepp | 0:2c8820705cdd | 20 | select(); |
bhepp | 0:2c8820705cdd | 21 | deselect(); // Chip must be deselected first |
bhepp | 0:2c8820705cdd | 22 | resetAll(); // we do a soft reset of the DW1000 everytime the driver starts |
bhepp | 0:2c8820705cdd | 23 | |
bhepp | 0:2c8820705cdd | 24 | // Configuration TODO: make method for that |
bhepp | 0:2c8820705cdd | 25 | // User Manual "2.5.5 Default Configurations that should be modified" p. 22 |
bhepp | 0:2c8820705cdd | 26 | //Those values are for the standard mode (6.8Mbps, 5, 16Mhz, 32 Symbols) and are INCOMPLETE! |
bhepp | 0:2c8820705cdd | 27 | // writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870); |
bhepp | 0:2c8820705cdd | 28 | // writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907); |
bhepp | 0:2c8820705cdd | 29 | // writeRegister32(DW1000_DRX_CONF, 0x08, 0x311A002D); |
bhepp | 0:2c8820705cdd | 30 | // writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD); |
bhepp | 0:2c8820705cdd | 31 | // writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); |
bhepp | 0:2c8820705cdd | 32 | // writeRegister32(DW1000_TX_POWER, 0, 0x0E082848); |
bhepp | 0:2c8820705cdd | 33 | // writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0); |
bhepp | 0:2c8820705cdd | 34 | // writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0); |
bhepp | 0:2c8820705cdd | 35 | // writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6); |
bhepp | 0:2c8820705cdd | 36 | |
bhepp | 0:2c8820705cdd | 37 | |
bhepp | 0:2c8820705cdd | 38 | //Those values are for the 110kbps mode (5, 16MHz, 1024 Symbols) and are quite complete |
bhepp | 0:2c8820705cdd | 39 | writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870); //AGC_TUNE1 for 16MHz PRF |
bhepp | 0:2c8820705cdd | 40 | writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907); //AGC_TUNE2 (Universal) |
bhepp | 0:2c8820705cdd | 41 | writeRegister16(DW1000_AGC_CTRL, 0x12, 0x0055); //AGC_TUNE3 (Universal) |
bhepp | 0:2c8820705cdd | 42 | |
bhepp | 0:2c8820705cdd | 43 | writeRegister16(DW1000_DRX_CONF, 0x02, 0x000A); //DRX_TUNE0b for 110kbps |
bhepp | 0:2c8820705cdd | 44 | writeRegister16(DW1000_DRX_CONF, 0x04, 0x0087); //DRX_TUNE1a for 16MHz PRF |
bhepp | 0:2c8820705cdd | 45 | writeRegister16(DW1000_DRX_CONF, 0x06, 0x0064); //DRX_TUNE1b for 110kbps & > 1024 symbols |
bhepp | 0:2c8820705cdd | 46 | writeRegister32(DW1000_DRX_CONF, 0x08, 0x351A009A); //PAC size for 1024 symbols preamble & 16MHz PRF |
bhepp | 0:2c8820705cdd | 47 | //writeRegister32(DW1000_DRX_CONF, 0x08, 0x371A011D); //PAC size for 2048 symbols preamble |
bhepp | 0:2c8820705cdd | 48 | |
bhepp | 0:2c8820705cdd | 49 | writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD); //LDE_CFG1 |
bhepp | 0:2c8820705cdd | 50 | writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); //LDE_CFG2 for 16MHz PRF |
bhepp | 0:2c8820705cdd | 51 | |
bhepp | 0:2c8820705cdd | 52 | writeRegister32(DW1000_TX_POWER, 0, 0x28282828); //Power for channel 5 |
bhepp | 0:2c8820705cdd | 53 | |
bhepp | 0:2c8820705cdd | 54 | writeRegister8(DW1000_RF_CONF, 0x0B, 0xD8); //RF_RXCTRLH for channel 5 |
bhepp | 0:2c8820705cdd | 55 | writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0); //RF_TXCTRL for channel 5 |
bhepp | 0:2c8820705cdd | 56 | |
bhepp | 0:2c8820705cdd | 57 | writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0); //TC_PGDELAY for channel 5 |
bhepp | 0:2c8820705cdd | 58 | |
bhepp | 0:2c8820705cdd | 59 | writeRegister32 (DW1000_FS_CTRL, 0x07, 0x0800041D); //FS_PLLCFG for channel 5 |
bhepp | 0:2c8820705cdd | 60 | writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6); //FS_PLLTUNE for channel 5 |
bhepp | 0:2c8820705cdd | 61 | |
bhepp | 0:2c8820705cdd | 62 | loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned off or there's receiving malfunction see User Manual LDELOAD on p22 & p158 |
bhepp | 0:2c8820705cdd | 63 | |
bhepp | 0:2c8820705cdd | 64 | // 110kbps CAUTION: a lot of other registers have to be set for an optimized operation on 110kbps |
bhepp | 0:2c8820705cdd | 65 | writeRegister16(DW1000_TX_FCTRL, 1, 0x0800 | 0x0100 | 0x0080); // use 1024 symbols preamble (0x0800) (previously 2048 - 0x2800), 16MHz pulse repetition frequency (0x0100), 110kbps bit rate (0x0080) see p.69 of DW1000 User Manual |
bhepp | 0:2c8820705cdd | 66 | writeRegister8(DW1000_SYS_CFG, 2, 0x44); // enable special receiving option for 110kbps (disable smartTxPower)!! (0x44) see p.64 of DW1000 User Manual [DO NOT enable 1024 byte frames (0x03) becuase it generates disturbance of ranging don't know why...] |
bhepp | 0:2c8820705cdd | 67 | |
bhepp | 0:2c8820705cdd | 68 | writeRegister16(DW1000_TX_ANTD, 0, 16384); // set TX and RX Antenna delay to neutral because we calibrate afterwards |
bhepp | 0:2c8820705cdd | 69 | writeRegister16(DW1000_LDE_CTRL, 0x1804, 16384); // = 2^14 a quarter of the range of the 16-Bit register which corresponds to zero calibration in a round trip (TX1+RX2+TX2+RX1) |
bhepp | 0:2c8820705cdd | 70 | |
bhepp | 0:2c8820705cdd | 71 | writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error |
bhepp | 0:2c8820705cdd | 72 | |
bhepp | 5:c34ebc7f650c | 73 | if (irq != NULL) { |
bhepp | 5:c34ebc7f650c | 74 | irq->enable_irq(); |
bhepp | 5:c34ebc7f650c | 75 | } |
bhepp | 0:2c8820705cdd | 76 | } |
bhepp | 0:2c8820705cdd | 77 | |
bhepp | 0:2c8820705cdd | 78 | void DW1000::setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)) { |
bhepp | 0:2c8820705cdd | 79 | bool RX = false; |
bhepp | 0:2c8820705cdd | 80 | bool TX = false; |
bhepp | 0:2c8820705cdd | 81 | if (callbackRX) { |
bhepp | 0:2c8820705cdd | 82 | this->callbackRX.attach(callbackRX); |
bhepp | 0:2c8820705cdd | 83 | RX = true; |
bhepp | 0:2c8820705cdd | 84 | } |
bhepp | 0:2c8820705cdd | 85 | if (callbackTX) { |
bhepp | 0:2c8820705cdd | 86 | this->callbackTX.attach(callbackTX); |
bhepp | 0:2c8820705cdd | 87 | TX = true; |
bhepp | 0:2c8820705cdd | 88 | } |
bhepp | 0:2c8820705cdd | 89 | setInterrupt(RX, TX); |
bhepp | 0:2c8820705cdd | 90 | } |
bhepp | 0:2c8820705cdd | 91 | |
bhepp | 0:2c8820705cdd | 92 | uint32_t DW1000::getDeviceID() { |
bhepp | 0:2c8820705cdd | 93 | uint32_t result; |
bhepp | 0:2c8820705cdd | 94 | readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4); |
bhepp | 0:2c8820705cdd | 95 | return result; |
bhepp | 0:2c8820705cdd | 96 | } |
bhepp | 0:2c8820705cdd | 97 | |
bhepp | 0:2c8820705cdd | 98 | uint64_t DW1000::getEUI() { |
bhepp | 0:2c8820705cdd | 99 | uint64_t result; |
bhepp | 0:2c8820705cdd | 100 | readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8); |
bhepp | 0:2c8820705cdd | 101 | return result; |
bhepp | 0:2c8820705cdd | 102 | } |
bhepp | 0:2c8820705cdd | 103 | |
bhepp | 0:2c8820705cdd | 104 | void DW1000::setEUI(uint64_t EUI) { |
bhepp | 0:2c8820705cdd | 105 | writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8); |
bhepp | 0:2c8820705cdd | 106 | } |
bhepp | 0:2c8820705cdd | 107 | |
bhepp | 0:2c8820705cdd | 108 | float DW1000::getVoltage() { |
bhepp | 0:2c8820705cdd | 109 | uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57 |
bhepp | 0:2c8820705cdd | 110 | writeRegister(DW1000_RF_CONF, 0x11, buffer, 2); |
bhepp | 0:2c8820705cdd | 111 | writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1); |
bhepp | 0:2c8820705cdd | 112 | writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1); |
bhepp | 0:2c8820705cdd | 113 | writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1); |
bhepp | 0:2c8820705cdd | 114 | readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature |
bhepp | 0:2c8820705cdd | 115 | float Voltage = buffer[5] * 0.0057 + 2.3; |
bhepp | 0:2c8820705cdd | 116 | //float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration |
bhepp | 0:2c8820705cdd | 117 | return Voltage; |
bhepp | 0:2c8820705cdd | 118 | } |
bhepp | 0:2c8820705cdd | 119 | |
bhepp | 0:2c8820705cdd | 120 | uint64_t DW1000::getStatus() { |
bhepp | 0:2c8820705cdd | 121 | return readRegister40(DW1000_SYS_STATUS, 0); |
bhepp | 0:2c8820705cdd | 122 | } |
bhepp | 0:2c8820705cdd | 123 | |
bhepp | 0:2c8820705cdd | 124 | bool DW1000::hasReceivedFrame() { |
bhepp | 0:2c8820705cdd | 125 | uint64_t status = getStatus(); |
bhepp | 0:2c8820705cdd | 126 | return status & 0x4000; |
bhepp | 0:2c8820705cdd | 127 | } |
bhepp | 0:2c8820705cdd | 128 | |
bhepp | 0:2c8820705cdd | 129 | void DW1000::clearReceivedFlag() { |
bhepp | 0:2c8820705cdd | 130 | writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits |
bhepp | 0:2c8820705cdd | 131 | } |
bhepp | 0:2c8820705cdd | 132 | |
bhepp | 4:faf802b4af85 | 133 | bool DW1000::hasTransmissionStarted() { |
bhepp | 4:faf802b4af85 | 134 | uint64_t status = getStatus(); |
bhepp | 4:faf802b4af85 | 135 | return status & 0x10; |
bhepp | 4:faf802b4af85 | 136 | } |
bhepp | 4:faf802b4af85 | 137 | |
bhepp | 4:faf802b4af85 | 138 | bool DW1000::hasSentPreamble() { |
bhepp | 4:faf802b4af85 | 139 | uint64_t status = getStatus(); |
bhepp | 4:faf802b4af85 | 140 | return status & 0x20; |
bhepp | 4:faf802b4af85 | 141 | } |
bhepp | 4:faf802b4af85 | 142 | |
bhepp | 4:faf802b4af85 | 143 | bool DW1000::hasSentPHYHeader() { |
bhepp | 4:faf802b4af85 | 144 | uint64_t status = getStatus(); |
bhepp | 4:faf802b4af85 | 145 | return status & 0x40; |
bhepp | 4:faf802b4af85 | 146 | } |
bhepp | 4:faf802b4af85 | 147 | |
bhepp | 0:2c8820705cdd | 148 | bool DW1000::hasSentFrame() { |
bhepp | 0:2c8820705cdd | 149 | uint64_t status = getStatus(); |
bhepp | 0:2c8820705cdd | 150 | return status & 0x80; |
bhepp | 0:2c8820705cdd | 151 | } |
bhepp | 0:2c8820705cdd | 152 | |
bhepp | 0:2c8820705cdd | 153 | void DW1000::clearSentFlag() { |
bhepp | 0:2c8820705cdd | 154 | writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits |
bhepp | 0:2c8820705cdd | 155 | } |
bhepp | 0:2c8820705cdd | 156 | |
bhepp | 2:12a2907957b8 | 157 | uint64_t DW1000::getSYSTimestamp() { |
bhepp | 2:12a2907957b8 | 158 | return readRegister40(DW1000_SYS_TIME, 0); |
bhepp | 2:12a2907957b8 | 159 | } |
bhepp | 2:12a2907957b8 | 160 | |
bhepp | 0:2c8820705cdd | 161 | uint64_t DW1000::getRXTimestamp() { |
bhepp | 0:2c8820705cdd | 162 | return readRegister40(DW1000_RX_TIME, 0); |
bhepp | 0:2c8820705cdd | 163 | } |
bhepp | 0:2c8820705cdd | 164 | |
bhepp | 0:2c8820705cdd | 165 | uint64_t DW1000::getTXTimestamp() { |
bhepp | 0:2c8820705cdd | 166 | return readRegister40(DW1000_TX_TIME, 0); |
bhepp | 0:2c8820705cdd | 167 | } |
bhepp | 0:2c8820705cdd | 168 | |
bhepp | 2:12a2907957b8 | 169 | float DW1000::getSYSTimestampUS() { |
bhepp | 2:12a2907957b8 | 170 | return getSYSTimestamp() * TIMEUNITS_TO_US; |
bhepp | 2:12a2907957b8 | 171 | } |
bhepp | 2:12a2907957b8 | 172 | |
bhepp | 2:12a2907957b8 | 173 | float DW1000::getRXTimestampUS() { |
bhepp | 2:12a2907957b8 | 174 | return getRXTimestamp() * TIMEUNITS_TO_US; |
bhepp | 2:12a2907957b8 | 175 | } |
bhepp | 2:12a2907957b8 | 176 | |
bhepp | 2:12a2907957b8 | 177 | float DW1000::getTXTimestampUS() { |
bhepp | 2:12a2907957b8 | 178 | return getTXTimestamp() * TIMEUNITS_TO_US; |
bhepp | 2:12a2907957b8 | 179 | } |
bhepp | 2:12a2907957b8 | 180 | |
bhepp | 0:2c8820705cdd | 181 | uint16_t DW1000::getStdNoise() { |
bhepp | 0:2c8820705cdd | 182 | return readRegister16(DW1000_RX_FQUAL, 0x00); |
bhepp | 0:2c8820705cdd | 183 | } |
bhepp | 0:2c8820705cdd | 184 | |
bhepp | 0:2c8820705cdd | 185 | uint16_t DW1000::getPACC() { |
bhepp | 0:2c8820705cdd | 186 | uint32_t v = readRegister32(DW1000_RX_FINFO, 0x00); |
bhepp | 0:2c8820705cdd | 187 | v >>= 20; |
bhepp | 0:2c8820705cdd | 188 | return static_cast<uint16_t>(v); |
bhepp | 0:2c8820705cdd | 189 | } |
bhepp | 0:2c8820705cdd | 190 | |
bhepp | 0:2c8820705cdd | 191 | uint16_t DW1000::getFPINDEX() { |
bhepp | 0:2c8820705cdd | 192 | return readRegister16(DW1000_RX_TIME, 0x05); |
bhepp | 0:2c8820705cdd | 193 | } |
bhepp | 0:2c8820705cdd | 194 | |
bhepp | 0:2c8820705cdd | 195 | uint16_t DW1000::getFPAMPL1() { |
bhepp | 0:2c8820705cdd | 196 | return readRegister16(DW1000_RX_TIME, 0x07); |
bhepp | 0:2c8820705cdd | 197 | } |
bhepp | 0:2c8820705cdd | 198 | |
bhepp | 0:2c8820705cdd | 199 | uint16_t DW1000::getFPAMPL2() { |
bhepp | 0:2c8820705cdd | 200 | return readRegister16(DW1000_RX_FQUAL, 0x02); |
bhepp | 0:2c8820705cdd | 201 | } |
bhepp | 0:2c8820705cdd | 202 | |
bhepp | 0:2c8820705cdd | 203 | uint16_t DW1000::getFPAMPL3() { |
bhepp | 0:2c8820705cdd | 204 | return readRegister16(DW1000_RX_FQUAL, 0x04); |
bhepp | 0:2c8820705cdd | 205 | } |
bhepp | 0:2c8820705cdd | 206 | |
bhepp | 0:2c8820705cdd | 207 | uint16_t DW1000::getCIRPWR() { |
bhepp | 0:2c8820705cdd | 208 | return readRegister16(DW1000_RX_FQUAL, 0x06); |
bhepp | 0:2c8820705cdd | 209 | } |
bhepp | 0:2c8820705cdd | 210 | |
bhepp | 2:12a2907957b8 | 211 | uint8_t DW1000::getPRF() |
bhepp | 2:12a2907957b8 | 212 | { |
bhepp | 2:12a2907957b8 | 213 | uint32_t prf_mask = static_cast<uint32_t>(0x1 << 19 | 0x1 << 18); |
bhepp | 2:12a2907957b8 | 214 | uint32_t prf = readRegister32(DW1000_CHAN_CTRL, 0x00); |
bhepp | 2:12a2907957b8 | 215 | prf >>= 18; |
bhepp | 2:12a2907957b8 | 216 | return static_cast<uint8_t>(prf & prf_mask); |
bhepp | 0:2c8820705cdd | 217 | } |
bhepp | 0:2c8820705cdd | 218 | |
bhepp | 0:2c8820705cdd | 219 | void DW1000::sendString(char* message) { |
bhepp | 0:2c8820705cdd | 220 | sendFrame((uint8_t*)message, strlen(message)+1); |
bhepp | 0:2c8820705cdd | 221 | } |
bhepp | 0:2c8820705cdd | 222 | |
bhepp | 0:2c8820705cdd | 223 | void DW1000::receiveString(char* message) { |
bhepp | 0:2c8820705cdd | 224 | readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)message, getFramelength()); // get data from buffer |
bhepp | 0:2c8820705cdd | 225 | } |
bhepp | 0:2c8820705cdd | 226 | |
bhepp | 0:2c8820705cdd | 227 | void DW1000::sendFrame(uint8_t* message, uint16_t length) { |
bhepp | 0:2c8820705cdd | 228 | //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor] |
bhepp | 0:2c8820705cdd | 229 | if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames |
bhepp | 5:c34ebc7f650c | 230 | |
bhepp | 5:c34ebc7f650c | 231 | Timer timer; |
bhepp | 5:c34ebc7f650c | 232 | timer.start(); |
bhepp | 0:2c8820705cdd | 233 | writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer |
bhepp | 0:2c8820705cdd | 234 | |
bhepp | 0:2c8820705cdd | 235 | uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame |
bhepp | 0:2c8820705cdd | 236 | length += 2; // including 2 CRC Bytes |
bhepp | 0:2c8820705cdd | 237 | length = ((backup & 0xFC) << 8) | (length & 0x03FF); |
bhepp | 0:2c8820705cdd | 238 | writeRegister16(DW1000_TX_FCTRL, 0, length); |
bhepp | 0:2c8820705cdd | 239 | |
bhepp | 0:2c8820705cdd | 240 | stopTRX(); // stop receiving |
bhepp | 0:2c8820705cdd | 241 | writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit |
bhepp | 0:2c8820705cdd | 242 | } |
bhepp | 0:2c8820705cdd | 243 | |
bhepp | 0:2c8820705cdd | 244 | void DW1000::sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp) { |
bhepp | 5:c34ebc7f650c | 245 | clearSentFlag(); // This is necessary, otherwise we pick up the transmission time of the previous send |
bhepp | 5:c34ebc7f650c | 246 | |
bhepp | 4:faf802b4af85 | 247 | if (TxTimestamp > CONST_2POWER40) { |
bhepp | 2:12a2907957b8 | 248 | TxTimestamp -= CONST_2POWER40; |
bhepp | 2:12a2907957b8 | 249 | } |
bhepp | 2:12a2907957b8 | 250 | |
bhepp | 0:2c8820705cdd | 251 | //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor] |
bhepp | 0:2c8820705cdd | 252 | if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames |
bhepp | 0:2c8820705cdd | 253 | writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer |
bhepp | 0:2c8820705cdd | 254 | |
bhepp | 0:2c8820705cdd | 255 | uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame |
bhepp | 0:2c8820705cdd | 256 | length += 2; // including 2 CRC Bytes |
bhepp | 0:2c8820705cdd | 257 | length = ((backup & 0xFC) << 8) | (length & 0x03FF); |
bhepp | 0:2c8820705cdd | 258 | writeRegister16(DW1000_TX_FCTRL, 0, length); |
bhepp | 0:2c8820705cdd | 259 | |
bhepp | 0:2c8820705cdd | 260 | writeRegister40(DW1000_DX_TIME, 0, TxTimestamp); //write the timestamp on which to send the message |
bhepp | 0:2c8820705cdd | 261 | |
bhepp | 5:c34ebc7f650c | 262 | stopTRX(); // stop receiving |
bhepp | 0:2c8820705cdd | 263 | writeRegister8(DW1000_SYS_CTRL, 0, 0x02 | 0x04); // trigger sending process by setting the TXSTRT and TXDLYS bit |
bhepp | 0:2c8820705cdd | 264 | } |
bhepp | 0:2c8820705cdd | 265 | |
bhepp | 0:2c8820705cdd | 266 | void DW1000::startRX() { |
bhepp | 0:2c8820705cdd | 267 | writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit |
bhepp | 5:c34ebc7f650c | 268 | wait_us(16); // According to page 81 in the user manual (RXENAB bit) |
bhepp | 0:2c8820705cdd | 269 | } |
bhepp | 0:2c8820705cdd | 270 | |
bhepp | 0:2c8820705cdd | 271 | void DW1000::stopTRX() { |
bhepp | 4:faf802b4af85 | 272 | writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode by setting the TRXOFF bit |
bhepp | 0:2c8820705cdd | 273 | } |
bhepp | 0:2c8820705cdd | 274 | |
bhepp | 0:2c8820705cdd | 275 | // PRIVATE Methods ------------------------------------------------------------------------------------ |
bhepp | 0:2c8820705cdd | 276 | void DW1000::loadLDE() { // initialise LDE algorithm LDELOAD User Manual p22 |
bhepp | 0:2c8820705cdd | 277 | writeRegister16(DW1000_PMSC, 0, 0x0301); // set clock to XTAL so OTP is reliable |
bhepp | 0:2c8820705cdd | 278 | writeRegister16(DW1000_OTP_IF, 0x06, 0x8000); // set LDELOAD bit in OTP |
bhepp | 0:2c8820705cdd | 279 | wait_us(150); |
bhepp | 0:2c8820705cdd | 280 | writeRegister16(DW1000_PMSC, 0, 0x0200); // recover to PLL clock |
bhepp | 0:2c8820705cdd | 281 | } |
bhepp | 0:2c8820705cdd | 282 | |
bhepp | 0:2c8820705cdd | 283 | void DW1000::resetRX() { |
bhepp | 0:2c8820705cdd | 284 | writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset |
bhepp | 0:2c8820705cdd | 285 | writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset |
bhepp | 0:2c8820705cdd | 286 | } |
bhepp | 0:2c8820705cdd | 287 | |
bhepp | 0:2c8820705cdd | 288 | void DW1000::hardwareReset(PinName reset_pin) { |
bhepp | 5:c34ebc7f650c | 289 | DigitalInOut reset(reset_pin); |
bhepp | 5:c34ebc7f650c | 290 | hardwareReset(reset); |
bhepp | 5:c34ebc7f650c | 291 | } |
bhepp | 5:c34ebc7f650c | 292 | |
bhepp | 5:c34ebc7f650c | 293 | void DW1000::hardwareReset(DigitalInOut& reset) { |
bhepp | 5:c34ebc7f650c | 294 | if (reset.is_connected()) { |
bhepp | 5:c34ebc7f650c | 295 | // DWM1000 RESET logic. |
bhepp | 5:c34ebc7f650c | 296 | if (DWM1000_DAMAGED) { |
bhepp | 5:c34ebc7f650c | 297 | // The following code works for damaged DWM1000 modules. |
bhepp | 5:c34ebc7f650c | 298 | // IMPORTANT: This will damage healthy DWM1000 modules! |
bhepp | 5:c34ebc7f650c | 299 | reset.output(); |
bhepp | 5:c34ebc7f650c | 300 | reset = 1; |
bhepp | 5:c34ebc7f650c | 301 | wait_ms(100); |
bhepp | 5:c34ebc7f650c | 302 | reset = 0; |
bhepp | 5:c34ebc7f650c | 303 | wait_ms(100); |
bhepp | 5:c34ebc7f650c | 304 | reset = 1; |
bhepp | 5:c34ebc7f650c | 305 | wait_ms(100); |
bhepp | 5:c34ebc7f650c | 306 | } else { |
bhepp | 5:c34ebc7f650c | 307 | // The following code works for healthy DWM1000 modules |
bhepp | 5:c34ebc7f650c | 308 | reset.output(); |
bhepp | 5:c34ebc7f650c | 309 | reset = 0; |
bhepp | 5:c34ebc7f650c | 310 | wait_ms(100); |
bhepp | 5:c34ebc7f650c | 311 | reset.input(); |
bhepp | 5:c34ebc7f650c | 312 | } |
bhepp | 0:2c8820705cdd | 313 | } |
bhepp | 0:2c8820705cdd | 314 | } |
bhepp | 0:2c8820705cdd | 315 | |
bhepp | 5:c34ebc7f650c | 316 | void DW1000::softwareReset() { |
bhepp | 5:c34ebc7f650c | 317 | stopTRX(); |
bhepp | 5:c34ebc7f650c | 318 | clearReceivedFlag(); |
bhepp | 5:c34ebc7f650c | 319 | clearSentFlag(); |
bhepp | 5:c34ebc7f650c | 320 | } |
bhepp | 5:c34ebc7f650c | 321 | |
bhepp | 0:2c8820705cdd | 322 | void DW1000::resetAll() { |
bhepp | 5:c34ebc7f650c | 323 | hardwareReset(reset); |
bhepp | 0:2c8820705cdd | 324 | |
bhepp | 0:2c8820705cdd | 325 | writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL |
bhepp | 0:2c8820705cdd | 326 | writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset |
bhepp | 0:2c8820705cdd | 327 | wait_us(10); // wait for PLL to lock |
bhepp | 0:2c8820705cdd | 328 | writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset |
bhepp | 0:2c8820705cdd | 329 | } |
bhepp | 0:2c8820705cdd | 330 | |
bhepp | 0:2c8820705cdd | 331 | |
bhepp | 0:2c8820705cdd | 332 | void DW1000::setInterrupt(bool RX, bool TX) { |
bhepp | 0:2c8820705cdd | 333 | writeRegister16(DW1000_SYS_MASK, 0, RX*0x4000 | TX*0x0080); // RX good frame 0x4000, TX done 0x0080 |
bhepp | 0:2c8820705cdd | 334 | } |
bhepp | 0:2c8820705cdd | 335 | |
bhepp | 0:2c8820705cdd | 336 | void DW1000::ISR() { |
bhepp | 0:2c8820705cdd | 337 | uint64_t status = getStatus(); |
bhepp | 0:2c8820705cdd | 338 | if (status & 0x4000) { // a frame was received |
bhepp | 0:2c8820705cdd | 339 | callbackRX.call(); |
bhepp | 0:2c8820705cdd | 340 | writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits |
bhepp | 0:2c8820705cdd | 341 | } |
bhepp | 0:2c8820705cdd | 342 | if (status & 0x80) { // sending complete |
bhepp | 0:2c8820705cdd | 343 | callbackTX.call(); |
bhepp | 0:2c8820705cdd | 344 | writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits |
bhepp | 0:2c8820705cdd | 345 | } |
bhepp | 0:2c8820705cdd | 346 | } |
bhepp | 0:2c8820705cdd | 347 | |
bhepp | 0:2c8820705cdd | 348 | uint16_t DW1000::getFramelength() { |
bhepp | 0:2c8820705cdd | 349 | uint16_t framelength = readRegister16(DW1000_RX_FINFO, 0); // get framelength |
bhepp | 0:2c8820705cdd | 350 | framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes |
bhepp | 0:2c8820705cdd | 351 | return framelength; |
bhepp | 0:2c8820705cdd | 352 | } |
bhepp | 0:2c8820705cdd | 353 | |
bhepp | 0:2c8820705cdd | 354 | // SPI Interface ------------------------------------------------------------------------------------ |
bhepp | 0:2c8820705cdd | 355 | uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) { |
bhepp | 0:2c8820705cdd | 356 | uint8_t result; |
bhepp | 0:2c8820705cdd | 357 | readRegister(reg, subaddress, &result, 1); |
bhepp | 0:2c8820705cdd | 358 | return result; |
bhepp | 0:2c8820705cdd | 359 | } |
bhepp | 0:2c8820705cdd | 360 | |
bhepp | 0:2c8820705cdd | 361 | uint16_t DW1000::readRegister16(uint8_t reg, uint16_t subaddress) { |
bhepp | 0:2c8820705cdd | 362 | uint16_t result; |
bhepp | 0:2c8820705cdd | 363 | readRegister(reg, subaddress, (uint8_t*)&result, 2); |
bhepp | 0:2c8820705cdd | 364 | return result; |
bhepp | 0:2c8820705cdd | 365 | } |
bhepp | 0:2c8820705cdd | 366 | |
bhepp | 0:2c8820705cdd | 367 | uint32_t DW1000::readRegister32(uint8_t reg, uint16_t subaddress) { |
bhepp | 0:2c8820705cdd | 368 | uint32_t result; |
bhepp | 0:2c8820705cdd | 369 | readRegister(reg, subaddress, (uint8_t*)&result, 4); |
bhepp | 0:2c8820705cdd | 370 | return result; |
bhepp | 0:2c8820705cdd | 371 | } |
bhepp | 0:2c8820705cdd | 372 | |
bhepp | 0:2c8820705cdd | 373 | uint64_t DW1000::readRegister40(uint8_t reg, uint16_t subaddress) { |
bhepp | 0:2c8820705cdd | 374 | uint64_t result; |
bhepp | 0:2c8820705cdd | 375 | readRegister(reg, subaddress, (uint8_t*)&result, 5); |
bhepp | 0:2c8820705cdd | 376 | result &= 0xFFFFFFFFFF; // only 40-Bit |
bhepp | 0:2c8820705cdd | 377 | return result; |
bhepp | 0:2c8820705cdd | 378 | } |
bhepp | 0:2c8820705cdd | 379 | |
bhepp | 0:2c8820705cdd | 380 | void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) { |
bhepp | 0:2c8820705cdd | 381 | writeRegister(reg, subaddress, &buffer, 1); |
bhepp | 0:2c8820705cdd | 382 | } |
bhepp | 0:2c8820705cdd | 383 | |
bhepp | 0:2c8820705cdd | 384 | void DW1000::writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer) { |
bhepp | 0:2c8820705cdd | 385 | writeRegister(reg, subaddress, (uint8_t*)&buffer, 2); |
bhepp | 0:2c8820705cdd | 386 | } |
bhepp | 0:2c8820705cdd | 387 | |
bhepp | 0:2c8820705cdd | 388 | void DW1000::writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer) { |
bhepp | 0:2c8820705cdd | 389 | writeRegister(reg, subaddress, (uint8_t*)&buffer, 4); |
bhepp | 0:2c8820705cdd | 390 | } |
bhepp | 0:2c8820705cdd | 391 | |
bhepp | 0:2c8820705cdd | 392 | void DW1000::writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer) { |
bhepp | 0:2c8820705cdd | 393 | writeRegister(reg, subaddress, (uint8_t*)&buffer, 5); |
bhepp | 0:2c8820705cdd | 394 | } |
bhepp | 0:2c8820705cdd | 395 | |
bhepp | 0:2c8820705cdd | 396 | void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { |
bhepp | 0:2c8820705cdd | 397 | setupTransaction(reg, subaddress, false); |
bhepp | 0:2c8820705cdd | 398 | for(int i=0; i<length; i++) // get data |
bhepp | 0:2c8820705cdd | 399 | buffer[i] = spi.write(0x00); |
bhepp | 0:2c8820705cdd | 400 | deselect(); |
bhepp | 0:2c8820705cdd | 401 | } |
bhepp | 0:2c8820705cdd | 402 | |
bhepp | 0:2c8820705cdd | 403 | void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) { |
bhepp | 0:2c8820705cdd | 404 | setupTransaction(reg, subaddress, true); |
bhepp | 0:2c8820705cdd | 405 | for(int i=0; i<length; i++) // put data |
bhepp | 0:2c8820705cdd | 406 | spi.write(buffer[i]); |
bhepp | 0:2c8820705cdd | 407 | deselect(); |
bhepp | 0:2c8820705cdd | 408 | } |
bhepp | 0:2c8820705cdd | 409 | |
bhepp | 0:2c8820705cdd | 410 | void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) { |
bhepp | 0:2c8820705cdd | 411 | reg |= (write * DW1000_WRITE_FLAG); // set read/write flag |
bhepp | 0:2c8820705cdd | 412 | select(); |
bhepp | 0:2c8820705cdd | 413 | if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte |
bhepp | 0:2c8820705cdd | 414 | spi.write(reg | DW1000_SUBADDRESS_FLAG); |
bhepp | 0:2c8820705cdd | 415 | if (subaddress > 0x7F) { // sub address too long, we need to set flag and send third header byte |
bhepp | 0:2c8820705cdd | 416 | spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); // and |
bhepp | 0:2c8820705cdd | 417 | spi.write((uint8_t)(subaddress >> 7)); |
bhepp | 0:2c8820705cdd | 418 | } else { |
bhepp | 0:2c8820705cdd | 419 | spi.write((uint8_t)subaddress); |
bhepp | 0:2c8820705cdd | 420 | } |
bhepp | 0:2c8820705cdd | 421 | } else { |
bhepp | 0:2c8820705cdd | 422 | spi.write(reg); // say which register address we want to access |
bhepp | 0:2c8820705cdd | 423 | } |
bhepp | 0:2c8820705cdd | 424 | } |
bhepp | 0:2c8820705cdd | 425 | |
bhepp | 0:2c8820705cdd | 426 | void DW1000::select() { // always called to start an SPI transmission |
bhepp | 5:c34ebc7f650c | 427 | if (irq != NULL) { |
bhepp | 5:c34ebc7f650c | 428 | irq->disable_irq(); |
bhepp | 5:c34ebc7f650c | 429 | } |
bhepp | 0:2c8820705cdd | 430 | cs = 0; // set Cable Select pin low to start transmission |
bhepp | 0:2c8820705cdd | 431 | } |
bhepp | 0:2c8820705cdd | 432 | |
bhepp | 0:2c8820705cdd | 433 | void DW1000::deselect() { // always called to end an SPI transmission |
bhepp | 0:2c8820705cdd | 434 | cs = 1; // set Cable Select pin high to stop transmission |
bhepp | 5:c34ebc7f650c | 435 | if (irq != NULL) { |
bhepp | 5:c34ebc7f650c | 436 | irq->enable_irq(); |
bhepp | 5:c34ebc7f650c | 437 | } |
bhepp | 0:2c8820705cdd | 438 | } |