Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: DW1000 ait_link BufferedSerial mbed
main_multi_range.cpp
- Committer:
- bhepp
- Date:
- 2016-02-13
- Revision:
- 2:5af0f0006f40
- Parent:
- 1:c070ca30da80
- Child:
- 4:1a2c1e5e5516
File content as of revision 2:5af0f0006f40:
#include "settings.h"
#if not BUILD_SLAVE
#include <stdarg.h>
#include <mbed.h>
#include <DW1000.h>
#include <DW1000Utils.h>
#include <mavlink_bridge/mavlink_bridge.h>
#include "BufferedSerial.h"
#include "UWB2WayMultiRange.h"
using ait::UWB2WayMultiRange;
//#define MEASURE_UWB_RANGING_RATE 1
using ait::MAVLinkBridge;
using ait::UART_Mbed;
const int SPI_FREQUENCY = 1000000;
const int TRACKER_ADDRESS = 0;
const int NUM_OF_SLAVES = 1;
const int SLAVE_ADDRESS_OFFSET = 10;
const bool USE_NLOS_SETTINGS = true;
const PinName DW_RESET_PIN = D15;
const PinName DW_MOSI_PIN = D11;
const PinName DW_MISO_PIN = D12;
const PinName DW_SCLK_PIN = D13;
const int MAX_NUM_OF_DW_UNITS = 4;
#if _DEBUG
const bool MAVLINK_COMM = false;
// const int NUM_OF_DW_UNITS = 1;
// const PinName DW_CS_PINS[NUM_OF_DW_UNITS] = {D10};
const int NUM_OF_DW_UNITS = 4;
const PinName DW_CS_PINS[NUM_OF_DW_UNITS] = {D7, D8, D9, D10};
#else
const bool MAVLINK_COMM = true;
const int NUM_OF_DW_UNITS = 4;
const PinName DW_CS_PINS[NUM_OF_DW_UNITS] = {D7, D8, D9, D10};
#endif
BufferedSerial pc(USBTX, USBRX, 115200, 8 * 1024); // USB UART Terminal
void send_status_message(MAVLinkBridge& mb, char* str, ...)
{
va_list args;
va_start(args, str);
if (MAVLINK_COMM) {
char buffer[MAVLINK_MSG_UWB_STATUS_FIELD_DESCRIPTION_LEN];
int n = vsnprintf(buffer, sizeof(buffer), str, args);
if(n > sizeof(buffer)) {
send_status_message(mb, "%s %d buffer to small (buf_size: %d, required: %d)!\r\n", __FILE__, __LINE__, sizeof(buffer), n);
} else {
// Pack and send message
mavlink_message_t msg;
mavlink_msg_uwb_status_pack(mb.getSysId(), mb.getCompId(), &msg, -1, buffer);
mb.sendMessage(msg);
}
} else {
pc.printf(str, args);
pc.printf("\r\n");
}
va_end(args);
}
void measureTimesOfFlight(UWB2WayMultiRange& tracker, MAVLinkBridge& mb, Timer& timer, float ranging_timeout = 0.1f)
{
#if _DEBUG
int time_begin_us = timer.read_us();
#endif
#if MEASURE_UWB_RANGING_RATE
static int32_t range_counter = 0;
static uint32_t last_stamp_us = timer.read_us();
#endif
for (int i = 0; i < NUM_OF_SLAVES; i++)
{
uint8_t remote_address = SLAVE_ADDRESS_OFFSET + i;
const UWB2WayMultiRange::RawRangingResult& raw_result = tracker.measureTimesOfFlight(remote_address, ranging_timeout);
if (raw_result.status == UWB2WayMultiRange::SUCCESS)
{
if (MAVLINK_COMM)
{
uint64_t timestamp_master_request_1[MAX_NUM_OF_DW_UNITS];
uint64_t timestamp_slave_reply[MAX_NUM_OF_DW_UNITS];
uint64_t timestamp_master_request_2[MAX_NUM_OF_DW_UNITS];
for (int j = 0; j < tracker.getNumOfModules(); ++j)
{
timestamp_master_request_1[j] = raw_result.timestamp_master_request_1[j];
timestamp_slave_reply[j] = raw_result.timestamp_slave_reply[j];
timestamp_master_request_2[j] = raw_result.timestamp_master_request_2[j];
}
for (int j = tracker.getNumOfModules(); j < MAX_NUM_OF_DW_UNITS; ++j)
{
timestamp_master_request_1[j] = 0;
timestamp_slave_reply[j] = 0;
timestamp_master_request_2[j] = 0;
}
// Pack and send message
mavlink_message_t msg;
mavlink_msg_uwb_2way_multi_range_raw_4_pack(
mb.getSysId(), mb.getCompId(), &msg,
tracker.getNumOfModules(),
tracker.getAddress(),
remote_address,
raw_result.timestamp_master_request_1_recv,
raw_result.timestamp_slave_reply_send,
raw_result.timestamp_master_request_2_recv,
timestamp_master_request_1,
timestamp_slave_reply,
timestamp_master_request_2
);
mb.sendMessage(msg);
}
else
{
for (int j = 0; j < tracker.getNumOfModules(); ++j)
{
int64_t timediff_slave = raw_result.timestamp_master_request_1_recv + raw_result.timestamp_master_request_2_recv - 2 * raw_result.timestamp_slave_reply_send;
// Calculation of the summand on the sending node/beacon
int64_t timediff_master = 2 * raw_result.timestamp_slave_reply[j] - raw_result.timestamp_master_request_1[j] - raw_result.timestamp_master_request_2[j];
// Calculation of the resulting sum of all four ToFs.
int64_t timediff = timediff_master + timediff_slave;
float tof = tracker.convertDWTimeunitsToMicroseconds(timediff) / 4.0f;
float range = tracker.convertTimeOfFlightToDistance(tof);
send_status_message(mb, "%d.%d - %d> range = %.2f, tof = %.2e", tracker.getAddress(), j, remote_address, range, tof);
}
}
}
else
{
send_status_message(mb, "Ranging failed: %s - %s", UWB2WayMultiRange::RANGING_STATUS_MESSAGES[raw_result.status], raw_result.status_description);
}
#if MEASURE_UWB_RANGING_RATE
++range_counter;
#endif
}
#if MEASURE_UWB_RANGING_RATE
uint32_t now_stamp_us = timer.read_us();
uint32_t dt_us = now_stamp_us - last_stamp_us;
if (dt_us > 2 * 1000 * 1000)
{
float rate = 1000 * 1000 * range_counter / ((float)dt_us);
send_status_message(mb, "Rate = %f.2Hz", rate);
send_status_message(mb, "range_counter = %d, stamp_us = %u, last_stamp_us = %u", range_counter, now_stamp_us, last_stamp_us);
range_counter = 0;
last_stamp_us = now_stamp_us;
}
#endif
#if _DEBUG
int time_end_us = timer.read_us();
int time_elapsed_us = time_end_us - time_begin_us;
int time_elapsed_ms = time_elapsed_us / 1000;
DEBUG_PRINTF_VA("Time elapsed for ranging and output: %d ms (%d microseconds)\r\n", time_elapsed_ms, time_elapsed_us);
DEBUG_PRINTF("\r\n\r\n");
#endif
#if _DEBUG
wait_ms(1000);
#endif
}
int main()
{
UART_Mbed uart(&pc);
MAVLinkBridge mb(&uart);
send_status_message(mb, "==== AIT UWB Multi Range ====");
SPI spi(DW_MOSI_PIN, DW_MISO_PIN, DW_SCLK_PIN);
spi.format(8, 0); // Setup the spi for standard 8 bit data and SPI-Mode 0 (GPIO5, GPIO6 open circuit or ground on DW1000)
// NOTE: Minimum Frequency 1MHz. Below it is now working. Could be something with the activation and deactivation of interrupts.
spi.frequency(SPI_FREQUENCY); // with a 1MHz clock rate (worked up to 49MHz in our Test)
Timer timer;
timer.start();
DW1000* dw_array[NUM_OF_DW_UNITS];
PinName irq_pin = NC;
InterruptIn irq(irq_pin);
send_status_message(mb, "Performing hardware reset of UWB modules\r\n");
// == IMPORTANT == Create all DW objects first (this will cause a reset of the DW module)
DW1000::hardwareReset(DW_RESET_PIN);
// Now we can initialize the DW modules
for (int i = 0; i < NUM_OF_DW_UNITS; ++i)
{
dw_array[i] = new DW1000(spi, irq, DW_CS_PINS[i]); // Device driver instanceSPI pins: (MOSI, MISO, SCLK, CS, IRQ, RESET)
DW1000& dw = *dw_array[i];
dw.setEUI(0xFAEDCD01FAEDCD01 + i); // basic methods called to check if we have a working SPI connection
send_status_message(mb, "\r\nUnit %d", i);
send_status_message(mb, "\r\nDecaWave 1.0 up and running!"); // Splashscreen
send_status_message(mb, "DEVICE_ID register: 0x%X", dw.getDeviceID());
send_status_message(mb, "EUI register: %016llX", dw.getEUI());
send_status_message(mb, "Voltage: %.2fV", dw.getVoltage());
// Set NLOS settings (According to DecaWave Application Note APS006)
if (USE_NLOS_SETTINGS)
{
send_status_message(mb, "Setting NLOS configuration for Unit %d", i);
DW1000Utils::setNLOSSettings(&dw, DATA_RATE_SETTING, PRF_SETTING, PREAMBLE_SETTING);
}
}
send_status_message(mb, "Initializing tracker with address %d", TRACKER_ADDRESS);
UWB2WayMultiRange tracker(TRACKER_ADDRESS);
for (int i = 0; i < NUM_OF_DW_UNITS; ++i)
{
tracker.addModule(dw_array[i]);
}
send_status_message(mb, "Entering main loop");
while (true)
{
for (int j = 0; j < NUM_OF_DW_UNITS; ++j)
{
measureTimesOfFlight(tracker, mb, timer);
}
}
// for (int i = 0; i < NUM_OF_DW_UNITS; ++i)
// {
// delete node_array[i];
// delete dw_array[i];
// }
}
#endif