File content as of revision 3:265a69f4c360:
#include "SLIP_ACCELERATION.h"
SLIP_ACCELERATION_2WHEEL::SLIP_ACCELERATION_2WHEEL(size_t onBoardDelay_ms_in, size_t wheelDelay_ms_in, float samplingTime):
Ts(samplingTime),
onBoardDelay_ms(onBoardDelay_ms_in),
wheelDelay_ms(wheelDelay_ms_in),
yawAcce_cal(samplingTime),
lpf_dVs(2,samplingTime,400.0), // 200 Hz
// hpf_dVs(2,samplingTime, 0.01, 4), // 0.1 Hz, 4th order critical-damped HPF
hpf_dVs(2,samplingTime, 0.05, 1), // 0.1 Hz, 4th order critical-damped HPF
OnboardSignal_FIFO(), // Empty
wheelSignal_FIFO() // Empty
{
//
n = 2; // This class is made specifically for differential-drive vehicle
//
zeros_2.assign(2,0.0);
// Not initialized
Flag_Init = false;
init_count = 0;
// Parameters
btotal = 0.194; // 0.2; // m
br = 0.103; // btotal/2.0; // m
bl = btotal - br; // m
r = 0.139/2.0; // m
// Inputs
acce_vehicleCenter = 0.0;
// wheelRotationalAcce = zeros_2;
acce_wheelSpeed = zeros_2;
yawRate = 0.0;
// States
yawAcce = 0.0;
acce_wheelCenter = zeros_2;
acce_wheelCenter_delay = zeros_2;
acce_wheelSpeed_delay = zeros_2;
// Results
dVs = zeros_2;
dVs_filtered = zeros_2;
//
dVs_unbiased = zeros_2;
dVs_bias = zeros_2;
// Initialize the queue
for (size_t i = 0; i < onBoardDelay_ms; ++i){
OnboardSignal_FIFO.push(zeros_2);
}
// Initialize the queue
for (size_t i = 0; i < onBoardDelay_ms; ++i){
wheelSignal_FIFO.push(zeros_2);
}
}
vector<float> SLIP_ACCELERATION_2WHEEL::iterateOnce(void){ // Calculate dVs
// Initialization
if (!Flag_Init){
if (init_count <= (max(wheelDelay_ms, onBoardDelay_ms)+1) ){
dVs_filtered = zeros_2;
init_count++;
return dVs_filtered;
}
dVs_bias = zeros_2;
dVs_unbiased = dVs;
dVs_filtered = zeros_2;
//
resetFilter();
Flag_Init = true;
return dVs_filtered; // output = 0.0
}
// Claculate the latest signal
acce_wheelCenter_cal();
// Pushing queue (On-board signals need to be delayed)
// queueOp(acce_wheelCenter_delay,acce_wheelCenter);
queueOp(acce_wheelCenter_delay, acce_wheelCenter, OnboardSignal_FIFO, onBoardDelay_ms);
queueOp(acce_wheelSpeed_delay, acce_wheelSpeed, wheelSignal_FIFO, wheelDelay_ms);
// Calculate the dVs
/*
for (size_t i = 0; i < n; ++i){
// acce_wheelSpeed[i] = r*wheelRotationalAcce[i];
// dVs[i] = acce_wheelSpeed[i] - acce_wheelCenter_delay[i];
dVs[i] = acce_wheelSpeed_delay[i] - acce_wheelCenter_delay[i];
}
*/
// dVs = acce_wheelSpeed_delay - acce_wheelCenter_delay;
dVs = Get_VectorPlus(acce_wheelSpeed_delay, acce_wheelCenter_delay, true); // minus
// Filtering the dVs
// dVs_filtered = dVs; // Nothing to do
// dVs_filtered = lpf_dVs.filter(dVs); // Low-pass: 0.0 Hz ~ 200 Hz
//
// dVs_filtered = hpf_dVs.filter(lpf_dVs.filter(dVs)); // Band-pass: 0.015 Hz ~ 200 Hz
// dVs_unbiased = dVs - dVs_bias
dVs_unbiased = Get_VectorPlus(dVs, dVs_bias, true); // minus
dVs_filtered = hpf_dVs.filter(lpf_dVs.filter(dVs_unbiased)); // Band-pass: 0.015 Hz ~ 200 Hz
//
// return dVs;
return dVs_filtered;
}
void SLIP_ACCELERATION_2WHEEL::resetFilter(void){ // Rest all filters, includeing LPF and HPF
// Bias calculation
// dVs_bias += dVs_unbiased - dVs_filtered
Get_VectorIncrement(dVs_bias, Get_VectorPlus(dVs_unbiased, dVs_filtered, true), false); // +=
//
yawAcce_cal.reset(yawRate);
lpf_dVs.reset(zeros_2);
hpf_dVs.reset(zeros_2);
dVs_filtered = zeros_2;
}
//
void SLIP_ACCELERATION_2WHEEL::acce_wheelCenter_cal(void){ // Calculate the linear acceleration at each wheel center
// Calculate the yawAcce
yawAcce = yawAcce_cal.filter(yawRate);
// Calculate the linear acceleration at each wheel center
// acce_wheelCenter[0] = acce_vehicleCenter; // Right
// acce_wheelCenter[1] = acce_vehicleCenter; // Left
//
acce_wheelCenter[0] = acce_vehicleCenter + yawAcce*br; // Right
acce_wheelCenter[1] = acce_vehicleCenter - yawAcce*bl; // Left
}
//
void SLIP_ACCELERATION_2WHEEL::queueOp(vector<float> &signal_delayed, const vector<float> &signal_in){ // The operation of the queue
// Push into queue first to prevent the "empty" error when onBoardDelay_ms is zero
OnboardSignal_FIFO.push(signal_in);
//----------------------------------------------------------//
// Get the delayed signal: signal_delayed
signal_delayed = OnboardSignal_FIFO.front();
// Control the buffer size
// Currently, the size of the queue is expected to be (onBoardDelay_ms + 1)
if (OnboardSignal_FIFO.size() <= onBoardDelay_ms){
// nothing to do
}else{
//
while(OnboardSignal_FIFO.size() > onBoardDelay_ms){
OnboardSignal_FIFO.pop();
}
// Now: OnboardSignal_FIFO.size() = onBoardDelay_ms
}
}
void SLIP_ACCELERATION_2WHEEL::queueOp(vector<float> &signal_delayed, const vector<float> &signal_in, queue<vector<float> > &queue_in, size_t queue_length){ // The operation of the queue
// Push into queue first to prevent the "empty" error when queue_length is zero
queue_in.push(signal_in);
//----------------------------------------------------------//
// Get the delayed signal: signal_delayed
signal_delayed = queue_in.front();
// Control the buffer size
// Currently, the size of the queue is expected to be (queue_length + 1)
if (queue_in.size() <= queue_length){
// nothing to do
}else{
//
while(queue_in.size() > queue_length){
queue_in.pop();
}
// Now: queue_in.size() = queue_length
}
}
// Utilities
void SLIP_ACCELERATION_2WHEEL::Mat_multiply_Vec(vector<float> &v_out, const vector<vector<float> > &m_left, const vector<float> &v_right){ // v_out = m_left*v_right
static vector<float>::iterator it_out;
static vector<const float>::iterator it_m_row;
static vector<const float>::iterator it_v;
//
it_out = v_out.begin();
for (size_t i = 0; i < m_left.size(); ++i){
*it_out = 0.0;
it_m_row = m_left[i].begin();
it_v = v_right.begin();
for (size_t j = 0; j < m_left[i].size(); ++j){
// *it_out += m_left[i][j] * v_right[j];
if (*it_m_row != 0.0 && *it_v != 0.0){
(*it_out) += (*it_m_row) * (*it_v);
}else{
// (*it_out) += 0.0
}
// (*it_out) += (*it_m_row) * (*it_v);
//
it_m_row++;
it_v++;
}
it_out++;
}
}
vector<float> SLIP_ACCELERATION_2WHEEL::Mat_multiply_Vec(const vector<vector<float> > &m_left, const vector<float> &v_right){ // v_out = m_left*v_right
static vector<float> v_out;
// Size check
if (v_out.size() != m_left.size()){
v_out.resize(m_left.size());
}
// Iterators
static vector<float>::iterator it_out;
static vector<const float>::iterator it_m_row;
static vector<const float>::iterator it_v;
//
it_out = v_out.begin();
for (size_t i = 0; i < m_left.size(); ++i){
*it_out = 0.0;
it_m_row = m_left[i].begin();
it_v = v_right.begin();
for (size_t j = 0; j < m_left[i].size(); ++j){
// *it_out += m_left[i][j] * v_right[j];
if (*it_m_row != 0.0 && *it_v != 0.0){
(*it_out) += (*it_m_row) * (*it_v);
}else{
// (*it_out) += 0.0
}
// (*it_out) += (*it_m_row) * (*it_v);
//
it_m_row++;
it_v++;
}
it_out++;
}
return v_out;
}
vector<float> SLIP_ACCELERATION_2WHEEL::Get_VectorPlus(const vector<float> &v_a, const vector<float> &v_b, bool is_minus) // v_a + (or -) v_b
{
static vector<float> v_c;
// Size check
if (v_c.size() != v_a.size()){
v_c.resize(v_a.size());
}
//
for (size_t i = 0; i < v_a.size(); ++i){
if (is_minus){
v_c[i] = v_a[i] - v_b[i];
}else{
v_c[i] = v_a[i] + v_b[i];
}
}
return v_c;
}
vector<float> SLIP_ACCELERATION_2WHEEL::Get_VectorScalarMultiply(const vector<float> &v_a, float scale) // scale*v_a
{
static vector<float> v_c;
// Size check
if (v_c.size() != v_a.size()){
v_c.resize(v_a.size());
}
// for pure negative
if (scale == -1.0){
for (size_t i = 0; i < v_a.size(); ++i){
v_c[i] = -v_a[i];
}
return v_c;
}
// else
for (size_t i = 0; i < v_a.size(); ++i){
v_c[i] = scale*v_a[i];
}
return v_c;
}
// Increment
void SLIP_ACCELERATION_2WHEEL::Get_VectorIncrement(vector<float> &v_a, const vector<float> &v_b, bool is_minus){ // v_a += (or -=) v_b
// Size check
if (v_a.size() != v_b.size()){
v_a.resize(v_b.size());
}
//
if (is_minus){ // -=
for (size_t i = 0; i < v_b.size(); ++i){
v_a[i] -= v_b[i];
}
}else{ // +=
for (size_t i = 0; i < v_b.size(); ++i){
v_a[i] += v_b[i];
}
}
}