mbed library sources. Supersedes mbed-src.
Dependents: SPIne CH_Communicatuin_Test CH_Communicatuin_Test2 MCP_SPIne ... more
Fork of mbed-dev-f303 by
platform/mbed_retarget.cpp
- Committer:
- AnnaBridge
- Date:
- 2017-06-21
- Revision:
- 167:e84263d55307
- Parent:
- 163:74e0ce7f98e8
- Child:
- 168:9672193075cf
File content as of revision 167:e84263d55307:
/* mbed Microcontroller Library * Copyright (c) 2006-2015 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "platform/platform.h" #include "platform/FilePath.h" #include "hal/serial_api.h" #include "platform/mbed_toolchain.h" #include "platform/mbed_semihost_api.h" #include "platform/mbed_interface.h" #include "platform/SingletonPtr.h" #include "platform/PlatformMutex.h" #include "platform/mbed_error.h" #include "platform/mbed_stats.h" #include "platform/mbed_critical.h" #include <stdlib.h> #include <string.h> #include <limits.h> #if DEVICE_STDIO_MESSAGES #include <stdio.h> #endif #include <errno.h> #include "platform/mbed_retarget.h" #if defined(__ARMCC_VERSION) # include <rt_sys.h> # define PREFIX(x) _sys##x # define OPEN_MAX _SYS_OPEN # ifdef __MICROLIB # pragma import(__use_full_stdio) # endif #elif defined(__ICCARM__) # include <yfuns.h> # define PREFIX(x) _##x # define OPEN_MAX 16 # define STDIN_FILENO 0 # define STDOUT_FILENO 1 # define STDERR_FILENO 2 #else # include <sys/stat.h> # include <sys/syslimits.h> # define PREFIX(x) x #endif #define FILE_HANDLE_RESERVED 0xFFFFFFFF using namespace mbed; #if defined(__MICROLIB) && (__ARMCC_VERSION>5030000) // Before version 5.03, we were using a patched version of microlib with proper names extern const char __stdin_name[] = ":tt"; extern const char __stdout_name[] = ":tt"; extern const char __stderr_name[] = ":tt"; #else extern const char __stdin_name[] = "/stdin"; extern const char __stdout_name[] = "/stdout"; extern const char __stderr_name[] = "/stderr"; #endif unsigned char *mbed_heap_start = 0; uint32_t mbed_heap_size = 0; /* newlib has the filehandle field in the FILE struct as a short, so * we can't just return a Filehandle* from _open and instead have to * put it in a filehandles array and return the index into that array * (or rather index+3, as filehandles 0-2 are stdin/out/err). */ static FileHandle *filehandles[OPEN_MAX]; static SingletonPtr<PlatformMutex> filehandle_mutex; namespace mbed { void remove_filehandle(FileHandle *file) { filehandle_mutex->lock(); /* Remove all open filehandles for this */ for (unsigned int fh_i = 0; fh_i < sizeof(filehandles)/sizeof(*filehandles); fh_i++) { if (filehandles[fh_i] == file) { filehandles[fh_i] = NULL; } } filehandle_mutex->unlock(); } } #if DEVICE_SERIAL extern int stdio_uart_inited; extern serial_t stdio_uart; #if MBED_CONF_PLATFORM_STDIO_CONVERT_NEWLINES static char stdio_in_prev; static char stdio_out_prev; #endif #endif static void init_serial() { #if DEVICE_SERIAL if (stdio_uart_inited) return; serial_init(&stdio_uart, STDIO_UART_TX, STDIO_UART_RX); #if MBED_CONF_PLATFORM_STDIO_BAUD_RATE serial_baud(&stdio_uart, MBED_CONF_PLATFORM_STDIO_BAUD_RATE); #endif #endif } /** * Sets errno when file opening fails. * Wipes out the filehandle too. * * @param error is a negative error code returned from an mbed function and * will be negated to store a positive error code in errno */ static int handle_open_errors(int error, unsigned filehandle_idx) { errno = -error; // Free file handle filehandles[filehandle_idx] = NULL; return -1; } static inline int openmode_to_posix(int openmode) { int posix = openmode; #ifdef __ARMCC_VERSION if (openmode & OPEN_PLUS) { posix = O_RDWR; } else if(openmode & OPEN_W) { posix = O_WRONLY; } else if(openmode & OPEN_A) { posix = O_WRONLY|O_APPEND; } else { posix = O_RDONLY; } /* a, w, a+, w+ all create if file does not already exist */ if (openmode & (OPEN_A|OPEN_W)) { posix |= O_CREAT; } /* w and w+ truncate */ if (openmode & OPEN_W) { posix |= O_TRUNC; } #elif defined(__ICCARM__) switch (openmode & _LLIO_RDWRMASK) { case _LLIO_RDONLY: posix = O_RDONLY; break; case _LLIO_WRONLY: posix = O_WRONLY; break; case _LLIO_RDWR : posix = O_RDWR ; break; } if (openmode & _LLIO_CREAT ) posix |= O_CREAT; if (openmode & _LLIO_APPEND) posix |= O_APPEND; if (openmode & _LLIO_TRUNC ) posix |= O_TRUNC; #elif defined(TOOLCHAIN_GCC) posix &= ~O_BINARY; #endif return posix; } /* @brief standard c library fopen() retargeting function. * * This function is invoked by the standard c library retargeting to handle fopen() * * @return * On success, a valid FILEHANDLE is returned. * On failure, -1 is returned and errno is set to an appropriate value e.g. * ENOENT file not found (default errno setting) * EMFILE the maximum number of open files was exceeded. * * */ extern "C" FILEHANDLE PREFIX(_open)(const char* name, int openmode) { #if defined(__MICROLIB) && (__ARMCC_VERSION>5030000) // Before version 5.03, we were using a patched version of microlib with proper names // This is the workaround that the microlib author suggested us static int n = 0; if (!std::strcmp(name, ":tt")) return n++; #else /* Use the posix convention that stdin,out,err are filehandles 0,1,2. */ if (std::strcmp(name, __stdin_name) == 0) { init_serial(); return 0; } else if (std::strcmp(name, __stdout_name) == 0) { init_serial(); return 1; } else if (std::strcmp(name, __stderr_name) == 0) { init_serial(); return 2; } #endif // find the first empty slot in filehandles filehandle_mutex->lock(); unsigned int fh_i; for (fh_i = 0; fh_i < sizeof(filehandles)/sizeof(*filehandles); fh_i++) { /* Take a next free filehandle slot available. */ if (filehandles[fh_i] == NULL) break; } if (fh_i >= sizeof(filehandles)/sizeof(*filehandles)) { /* Too many file handles have been opened */ errno = EMFILE; filehandle_mutex->unlock(); return -1; } filehandles[fh_i] = (FileHandle*)FILE_HANDLE_RESERVED; filehandle_mutex->unlock(); FileHandle *res = NULL; /* FILENAME: ":0x12345678" describes a FileHandle* */ if (name[0] == ':') { void *p; std::sscanf(name, ":%p", &p); res = (FileHandle*)p; /* FILENAME: "/file_system/file_name" */ } else { FilePath path(name); if (!path.exists()) { /* The first part of the filename (between first 2 '/') is not a * registered mount point in the namespace. */ return handle_open_errors(-ENOENT, fh_i); } if (path.isFile()) { res = path.file(); } else { FileSystemHandle *fs = path.fileSystem(); if (fs == NULL) { return handle_open_errors(-ENOENT, fh_i); } int posix_mode = openmode_to_posix(openmode); int err = fs->open(&res, path.fileName(), posix_mode); if (err) { return handle_open_errors(err, fh_i); } } } filehandles[fh_i] = res; return fh_i + 3; // +3 as filehandles 0-2 are stdin/out/err } extern "C" int PREFIX(_close)(FILEHANDLE fh) { if (fh < 3) return 0; FileHandle* fhc = filehandles[fh-3]; filehandles[fh-3] = NULL; if (fhc == NULL) { errno = EBADF; return -1; } int err = fhc->close(); if (err < 0) { errno = -err; return -1; } else { return 0; } } #if defined(__ICCARM__) extern "C" size_t __write (int fh, const unsigned char *buffer, size_t length) { #else extern "C" int PREFIX(_write)(FILEHANDLE fh, const unsigned char *buffer, unsigned int length, int mode) { #endif int n; // n is the number of bytes written #if defined(MBED_TRAP_ERRORS_ENABLED) && MBED_TRAP_ERRORS_ENABLED && defined(MBED_CONF_RTOS_PRESENT) if (core_util_is_isr_active() || !core_util_are_interrupts_enabled()) { error("Error - writing to a file in an ISR or critical section\r\n"); } #endif if (fh < 3) { #if DEVICE_SERIAL if (!stdio_uart_inited) init_serial(); #if MBED_CONF_PLATFORM_STDIO_CONVERT_NEWLINES for (unsigned int i = 0; i < length; i++) { if (buffer[i] == '\n' && stdio_out_prev != '\r') { serial_putc(&stdio_uart, '\r'); } serial_putc(&stdio_uart, buffer[i]); stdio_out_prev = buffer[i]; } #else for (unsigned int i = 0; i < length; i++) { serial_putc(&stdio_uart, buffer[i]); } #endif #endif n = length; } else { FileHandle* fhc = filehandles[fh-3]; if (fhc == NULL) { errno = EBADF; return -1; } n = fhc->write(buffer, length); if (n < 0) { errno = -n; } } #ifdef __ARMCC_VERSION return length-n; #else return n; #endif } #if defined(__ICCARM__) extern "C" size_t __read (int fh, unsigned char *buffer, size_t length) { #else extern "C" int PREFIX(_read)(FILEHANDLE fh, unsigned char *buffer, unsigned int length, int mode) { #endif int n; // n is the number of bytes read #if defined(MBED_TRAP_ERRORS_ENABLED) && MBED_TRAP_ERRORS_ENABLED && defined(MBED_CONF_RTOS_PRESENT) if (core_util_is_isr_active() || !core_util_are_interrupts_enabled()) { error("Error - reading from a file in an ISR or critical section\r\n"); } #endif if (fh < 3) { // only read a character at a time from stdin #if DEVICE_SERIAL if (!stdio_uart_inited) init_serial(); #if MBED_CONF_PLATFORM_STDIO_CONVERT_NEWLINES while (true) { char c = serial_getc(&stdio_uart); if ((c == '\r' && stdio_in_prev != '\n') || (c == '\n' && stdio_in_prev != '\r')) { stdio_in_prev = c; *buffer = '\n'; break; } else if ((c == '\r' && stdio_in_prev == '\n') || (c == '\n' && stdio_in_prev == '\r')) { stdio_in_prev = c; // onto next character continue; } else { stdio_in_prev = c; *buffer = c; break; } } #else *buffer = serial_getc(&stdio_uart); #endif #endif n = 1; } else { FileHandle* fhc = filehandles[fh-3]; if (fhc == NULL) { errno = EBADF; return -1; } n = fhc->read(buffer, length); if (n < 0) { errno = -n; } } #ifdef __ARMCC_VERSION return length-n; #else return n; #endif } #ifdef __ARMCC_VERSION extern "C" int PREFIX(_istty)(FILEHANDLE fh) #else extern "C" int _isatty(FILEHANDLE fh) #endif { /* stdin, stdout and stderr should be tty */ if (fh < 3) return 1; FileHandle* fhc = filehandles[fh-3]; if (fhc == NULL) { errno = EBADF; return 0; } int tty = fhc->isatty(); if (tty < 0) { errno = -tty; return 0; } else { return tty; } } extern "C" #if defined(__ARMCC_VERSION) int _sys_seek(FILEHANDLE fh, long offset) #elif defined(__ICCARM__) long __lseek(int fh, long offset, int whence) #else int _lseek(FILEHANDLE fh, int offset, int whence) #endif { #if defined(__ARMCC_VERSION) int whence = SEEK_SET; #endif if (fh < 3) { errno = ESPIPE; return -1; } FileHandle* fhc = filehandles[fh-3]; if (fhc == NULL) { errno = EBADF; return -1; } off_t off = fhc->seek(offset, whence); if (off < 0) { errno = -off; return -1; } // Assuming INT_MAX = LONG_MAX, so we don't care about prototype difference if (off > INT_MAX) { errno = EOVERFLOW; return -1; } return off; } #ifdef __ARMCC_VERSION extern "C" int PREFIX(_ensure)(FILEHANDLE fh) { if (fh < 3) return 0; FileHandle* fhc = filehandles[fh-3]; if (fhc == NULL) { errno = EBADF; return -1; } int err = fhc->sync(); if (err < 0) { errno = -err; return -1; } else { return 0; } } extern "C" long PREFIX(_flen)(FILEHANDLE fh) { if (fh < 3) { errno = EINVAL; return -1; } FileHandle* fhc = filehandles[fh-3]; if (fhc == NULL) { errno = EBADF; return -1; } off_t size = fhc->size(); if (size < 0) { errno = -size; return -1; } if (size > LONG_MAX) { errno = EOVERFLOW; return -1; } return size; } #endif #if !defined(__ARMCC_VERSION) && !defined(__ICCARM__) extern "C" int _fstat(int fd, struct stat *st) { if (fd < 3) { st->st_mode = S_IFCHR; return 0; } errno = EBADF; return -1; } #endif namespace std { extern "C" int remove(const char *path) { FilePath fp(path); FileSystemHandle *fs = fp.fileSystem(); if (fs == NULL) { errno = ENOENT; return -1; } int err = fs->remove(fp.fileName()); if (err < 0) { errno = -err; return -1; } else { return 0; } } extern "C" int rename(const char *oldname, const char *newname) { FilePath fpOld(oldname); FilePath fpNew(newname); FileSystemHandle *fsOld = fpOld.fileSystem(); FileSystemHandle *fsNew = fpNew.fileSystem(); if (fsOld == NULL) { errno = ENOENT; return -1; } /* rename only if both files are on the same FS */ if (fsOld != fsNew) { errno = EXDEV; return -1; } int err = fsOld->rename(fpOld.fileName(), fpNew.fileName()); if (err < 0) { errno = -err; return -1; } else { return 0; } } extern "C" char *tmpnam(char *s) { errno = EBADF; return NULL; } extern "C" FILE *tmpfile() { errno = EBADF; return NULL; } } // namespace std #ifdef __ARMCC_VERSION extern "C" char *_sys_command_string(char *cmd, int len) { return NULL; } #endif extern "C" DIR *opendir(const char *path) { FilePath fp(path); FileSystemHandle* fs = fp.fileSystem(); if (fs == NULL) { errno = ENOENT; return NULL; } DirHandle *dir; int err = fs->open(&dir, fp.fileName()); if (err < 0) { errno = -err; return NULL; } return dir; } extern "C" struct dirent *readdir(DIR *dir) { static struct dirent ent; int err = dir->read(&ent); if (err < 1) { if (err < 0) { errno = -err; } return NULL; } return &ent; } extern "C" int closedir(DIR *dir) { int err = dir->close(); if (err < 0) { errno = -err; return -1; } else { return 0; } } extern "C" void rewinddir(DIR *dir) { dir->rewind(); } extern "C" off_t telldir(DIR *dir) { return dir->tell(); } extern "C" void seekdir(DIR *dir, off_t off) { dir->seek(off); } extern "C" int mkdir(const char *path, mode_t mode) { FilePath fp(path); FileSystemHandle *fs = fp.fileSystem(); if (fs == NULL) return -1; int err = fs->mkdir(fp.fileName(), mode); if (err < 0) { errno = -err; return -1; } else { return 0; } } extern "C" int stat(const char *path, struct stat *st) { FilePath fp(path); FileSystemHandle *fs = fp.fileSystem(); if (fs == NULL) return -1; int err = fs->stat(fp.fileName(), st); if (err < 0) { errno = -err; return -1; } else { return 0; } } #if defined(TOOLCHAIN_GCC) /* prevents the exception handling name demangling code getting pulled in */ #include "mbed_error.h" namespace __gnu_cxx { void __verbose_terminate_handler() { error("Exception"); } } extern "C" WEAK void __cxa_pure_virtual(void); extern "C" WEAK void __cxa_pure_virtual(void) { exit(1); } #endif // Provide implementation of _sbrk (low-level dynamic memory allocation // routine) for GCC_ARM which compares new heap pointer with MSP instead of // SP. This make it compatible with RTX RTOS thread stacks. #if defined(TOOLCHAIN_GCC_ARM) || defined(TOOLCHAIN_GCC_CR) #if defined(TARGET_CORTEX_A) extern "C" uint32_t __HeapLimit; #endif // Turn off the errno macro and use actual global variable instead. #undef errno extern "C" int errno; // Dynamic memory allocation related syscall. #if defined(TARGET_NUMAKER_PFM_NUC472) || defined(TARGET_NUMAKER_PFM_M453) // Overwrite _sbrk() to support two region model (heap and stack are two distinct regions). // __wrap__sbrk() is implemented in: // TARGET_NUMAKER_PFM_NUC472 hal/targets/cmsis/TARGET_NUVOTON/TARGET_NUC472/TARGET_NUMAKER_PFM_NUC472/TOOLCHAIN_GCC_ARM/retarget.c // TARGET_NUMAKER_PFM_M453 hal/targets/cmsis/TARGET_NUVOTON/TARGET_M451/TARGET_NUMAKER_PFM_M453/TOOLCHAIN_GCC_ARM/retarget.c extern "C" void *__wrap__sbrk(int incr); extern "C" caddr_t _sbrk(int incr) { return (caddr_t) __wrap__sbrk(incr); } #else // Linker defined symbol used by _sbrk to indicate where heap should start. extern "C" uint32_t __end__; extern "C" caddr_t _sbrk(int incr) { static unsigned char* heap = (unsigned char*)&__end__; unsigned char* prev_heap = heap; unsigned char* new_heap = heap + incr; #if defined(TARGET_CORTEX_A) if (new_heap >= (unsigned char*)&__HeapLimit) { /* __HeapLimit is end of heap section */ #else if (new_heap >= (unsigned char*)__get_MSP()) { #endif errno = ENOMEM; return (caddr_t)-1; } // Additional heap checking if set if (mbed_heap_size && (new_heap >= mbed_heap_start + mbed_heap_size)) { errno = ENOMEM; return (caddr_t)-1; } heap = new_heap; return (caddr_t) prev_heap; } #endif #endif #if defined(TOOLCHAIN_GCC_ARM) || defined(TOOLCHAIN_GCC_CR) extern "C" void _exit(int return_code) { #else namespace std { extern "C" void exit(int return_code) { #endif #if DEVICE_STDIO_MESSAGES #if MBED_CONF_PLATFORM_STDIO_FLUSH_AT_EXIT fflush(stdout); fflush(stderr); #endif #endif #if DEVICE_SEMIHOST if (mbed_interface_connected()) { semihost_exit(); } #endif if (return_code) { mbed_die(); } while (1); } #if !defined(TOOLCHAIN_GCC_ARM) && !defined(TOOLCHAIN_GCC_CR) } //namespace std #endif #if defined(TOOLCHAIN_ARM) || defined(TOOLCHAIN_GCC) // This series of function disable the registration of global destructors // in a dynamic table which will be called when the application exit. // In mbed, program never exit properly, it dies. // More informations about this topic for ARMCC here: // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/6449.html extern "C" { int __aeabi_atexit(void *object, void (*dtor)(void* /*this*/), void *handle) { return 1; } int __cxa_atexit(void (*dtor)(void* /*this*/), void *object, void *handle) { return 1; } void __cxa_finalize(void *handle) { } } // end of extern "C" #endif #if defined(TOOLCHAIN_GCC) /* * Depending on how newlib is configured, it is often not enough to define * __aeabi_atexit, __cxa_atexit and __cxa_finalize in order to override the * behavior regarding the registration of handlers with atexit. * * To overcome this limitation, exit and atexit are overriden here. */ extern "C"{ /** * @brief Retarget of exit for GCC. * @details Unlike the standard version, this function doesn't call any function * registered with atexit before calling _exit. */ void __wrap_exit(int return_code) { _exit(return_code); } /** * @brief Retarget atexit from GCC. * @details This function will always fail and never register any handler to be * called at exit. */ int __wrap_atexit(void (*func)()) { return 1; } } #endif namespace mbed { void mbed_set_unbuffered_stream(std::FILE *_file) { #if defined (__ICCARM__) char buf[2]; std::setvbuf(_file,buf,_IONBF,NULL); #else setbuf(_file, NULL); #endif } /* Applications are expected to use fdopen() * not this function directly. This code had to live here because FILE and FileHandle * processes are all linked together here. */ std::FILE *mbed_fdopen(FileHandle *fh, const char *mode) { char buf[12]; /* :0x12345678 + null byte */ std::sprintf(buf, ":%p", fh); std::FILE *stream = std::fopen(buf, mode); /* newlib-nano doesn't appear to ever call _isatty itself, so * happily fully buffers an interactive stream. Deal with that here. */ if (stream && fh->isatty()) { mbed_set_unbuffered_stream(stream); } return stream; } int mbed_getc(std::FILE *_file){ #if defined (__ICCARM__) /*This is only valid for unbuffered streams*/ int res = std::fgetc(_file); if (res>=0){ _file->_Mode = (unsigned short)(_file->_Mode & ~ 0x1000);/* Unset read mode */ _file->_Rend = _file->_Wend; _file->_Next = _file->_Wend; } return res; #else return std::fgetc(_file); #endif } char* mbed_gets(char*s, int size, std::FILE *_file){ #if defined (__ICCARM__) /*This is only valid for unbuffered streams*/ char *str = fgets(s,size,_file); if (str!=NULL){ _file->_Mode = (unsigned short)(_file->_Mode & ~ 0x1000);/* Unset read mode */ _file->_Rend = _file->_Wend; _file->_Next = _file->_Wend; } return str; #else return std::fgets(s,size,_file); #endif } } // namespace mbed #if defined (__ICCARM__) // Stub out locks when an rtos is not present extern "C" WEAK void __iar_system_Mtxinit(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_system_Mtxdst(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_system_Mtxlock(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_system_Mtxunlock(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_file_Mtxinit(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_file_Mtxdst(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_file_Mtxlock(__iar_Rmtx *mutex) {} extern "C" WEAK void __iar_file_Mtxunlock(__iar_Rmtx *mutex) {} #elif defined(__CC_ARM) // Do nothing #elif defined (__GNUC__) struct _reent; // Stub out locks when an rtos is not present extern "C" WEAK void __rtos_malloc_lock( struct _reent *_r ) {} extern "C" WEAK void __rtos_malloc_unlock( struct _reent *_r ) {} extern "C" WEAK void __rtos_env_lock( struct _reent *_r ) {} extern "C" WEAK void __rtos_env_unlock( struct _reent *_r ) {} extern "C" void __malloc_lock( struct _reent *_r ) { __rtos_malloc_lock(_r); } extern "C" void __malloc_unlock( struct _reent *_r ) { __rtos_malloc_unlock(_r); } extern "C" void __env_lock( struct _reent *_r ) { __rtos_env_lock(_r); } extern "C" void __env_unlock( struct _reent *_r ) { __rtos_env_unlock(_r); } #define CXA_GUARD_INIT_DONE (1 << 0) #define CXA_GUARD_INIT_IN_PROGRESS (1 << 1) #define CXA_GUARD_MASK (CXA_GUARD_INIT_DONE | CXA_GUARD_INIT_IN_PROGRESS) extern "C" int __cxa_guard_acquire(int *guard_object_p) { uint8_t *guard_object = (uint8_t *)guard_object_p; if (CXA_GUARD_INIT_DONE == (*guard_object & CXA_GUARD_MASK)) { return 0; } singleton_lock(); if (CXA_GUARD_INIT_DONE == (*guard_object & CXA_GUARD_MASK)) { singleton_unlock(); return 0; } MBED_ASSERT(0 == (*guard_object & CXA_GUARD_MASK)); *guard_object = *guard_object | CXA_GUARD_INIT_IN_PROGRESS; return 1; } extern "C" void __cxa_guard_release(int *guard_object_p) { uint8_t *guard_object = (uint8_t *)guard_object_p; MBED_ASSERT(CXA_GUARD_INIT_IN_PROGRESS == (*guard_object & CXA_GUARD_MASK)); *guard_object = (*guard_object & ~CXA_GUARD_MASK) | CXA_GUARD_INIT_DONE; singleton_unlock(); } extern "C" void __cxa_guard_abort(int *guard_object_p) { uint8_t *guard_object = (uint8_t *)guard_object_p; MBED_ASSERT(CXA_GUARD_INIT_IN_PROGRESS == (*guard_object & CXA_GUARD_MASK)); *guard_object = *guard_object & ~CXA_GUARD_INIT_IN_PROGRESS; singleton_unlock(); } #endif void *operator new(std::size_t count) { void *buffer = malloc(count); if (NULL == buffer) { error("Operator new out of memory\r\n"); } return buffer; } void *operator new[](std::size_t count) { void *buffer = malloc(count); if (NULL == buffer) { error("Operator new[] out of memory\r\n"); } return buffer; } void operator delete(void *ptr) { if (ptr != NULL) { free(ptr); } } void operator delete[](void *ptr) { if (ptr != NULL) { free(ptr); } } #if defined(MBED_CONF_RTOS_PRESENT) && defined(MBED_TRAP_ERRORS_ENABLED) && MBED_TRAP_ERRORS_ENABLED static const char* error_msg(int32_t status) { switch (status) { case osError: return "Unspecified RTOS error"; case osErrorTimeout: return "Operation not completed within the timeout period"; case osErrorResource: return "Resource not available"; case osErrorParameter: return "Parameter error"; case osErrorNoMemory: return "System is out of memory"; case osErrorISR: return "Not allowed in ISR context"; default: return "Unknown"; } } extern "C" void EvrRtxKernelError (int32_t status) { error("Kernel error %i: %s\r\n", status, error_msg(status)); } extern "C" void EvrRtxThreadError (osThreadId_t thread_id, int32_t status) { error("Thread %p error %i: %s\r\n", thread_id, status, error_msg(status)); } extern "C" void EvrRtxTimerError (osTimerId_t timer_id, int32_t status) { error("Timer %p error %i: %s\r\n", timer_id, status, error_msg(status)); } extern "C" void EvrRtxEventFlagsError (osEventFlagsId_t ef_id, int32_t status) { error("Event %p error %i: %s\r\n", ef_id, status, error_msg(status)); } extern "C" void EvrRtxMutexError (osMutexId_t mutex_id, int32_t status) { error("Mutex %p error %i: %s\r\n", mutex_id, status, error_msg(status)); } extern "C" void EvrRtxSemaphoreError (osSemaphoreId_t semaphore_id, int32_t status) { // Ignore semaphore overflow, the count will saturate with a returned error if (status == osRtxErrorSemaphoreCountLimit) { return; } error("Semaphore %p error %i\r\n", semaphore_id, status); } extern "C" void EvrRtxMemoryPoolError (osMemoryPoolId_t mp_id, int32_t status) { error("Memory Pool %p error %i\r\n", mp_id, status); } extern "C" void EvrRtxMessageQueueError (osMessageQueueId_t mq_id, int32_t status) { error("Message Queue %p error %i\r\n", mq_id, status); } #endif