mbed library sources. Supersedes mbed-src.
Dependents: SPIne CH_Communicatuin_Test CH_Communicatuin_Test2 MCP_SPIne ... more
Fork of mbed-dev-f303 by
platform/mbed_critical.c
- Committer:
- AnnaBridge
- Date:
- 2017-06-21
- Revision:
- 167:e84263d55307
- Parent:
- 160:d5399cc887bb
- Child:
- 170:19eb464bc2be
File content as of revision 167:e84263d55307:
/* * Copyright (c) 2015-2016, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Declare __STDC_LIMIT_MACROS so stdint.h defines UINT32_MAX when using C++ */ #define __STDC_LIMIT_MACROS #include "platform/mbed_critical.h" #include "cmsis.h" #include "platform/mbed_assert.h" #include "platform/mbed_toolchain.h" #define EXCLUSIVE_ACCESS (!defined (__CORTEX_M0) && !defined (__CORTEX_M0PLUS)) static volatile uint32_t interrupt_enable_counter = 0; static volatile bool critical_interrupts_disabled = false; bool core_util_are_interrupts_enabled(void) { #if defined(__CORTEX_A9) return ((__get_CPSR() & 0x80) == 0); #else return ((__get_PRIMASK() & 0x1) == 0); #endif } bool core_util_is_isr_active(void) { #if defined(__CORTEX_A9) switch(__get_CPSR() & 0x1FU) { case MODE_USR: case MODE_SYS: return false; case MODE_SVC: default: return true; } #else return (__get_IPSR() != 0U); #endif } MBED_WEAK void core_util_critical_section_enter(void) { bool interrupts_disabled = !core_util_are_interrupts_enabled(); __disable_irq(); /* Save the interrupt disabled state as it was prior to any nested critical section lock use */ if (!interrupt_enable_counter) { critical_interrupts_disabled = interrupts_disabled; } /* If the interrupt_enable_counter overflows or we are in a nested critical section and interrupts are enabled, then something has gone badly wrong thus assert an error. */ MBED_ASSERT(interrupt_enable_counter < UINT32_MAX); // FIXME #ifndef FEATURE_UVISOR if (interrupt_enable_counter > 0) { MBED_ASSERT(interrupts_disabled); } #else #warning "core_util_critical_section_enter needs fixing to work from unprivileged code" #endif /* FEATURE_UVISOR */ interrupt_enable_counter++; } MBED_WEAK void core_util_critical_section_exit(void) { /* If critical_section_enter has not previously been called, do nothing */ if (interrupt_enable_counter) { // FIXME #ifndef FEATURE_UVISOR bool interrupts_disabled = !core_util_are_interrupts_enabled(); /* get the current interrupt disabled state */ MBED_ASSERT(interrupts_disabled); /* Interrupts must be disabled on invoking an exit from a critical section */ #else #warning "core_util_critical_section_exit needs fixing to work from unprivileged code" #endif /* FEATURE_UVISOR */ interrupt_enable_counter--; /* Only re-enable interrupts if we are exiting the last of the nested critical sections and interrupts were enabled on entry to the first critical section. */ if (!interrupt_enable_counter && !critical_interrupts_disabled) { __enable_irq(); } } } #if EXCLUSIVE_ACCESS /* Supress __ldrex and __strex deprecated warnings - "#3731-D: intrinsic is deprecated" */ #if defined (__CC_ARM) #pragma diag_suppress 3731 #endif bool core_util_atomic_cas_u8(uint8_t *ptr, uint8_t *expectedCurrentValue, uint8_t desiredValue) { uint8_t currentValue = __LDREXB((volatile uint8_t*)ptr); if (currentValue != *expectedCurrentValue) { *expectedCurrentValue = currentValue; __CLREX(); return false; } return !__STREXB(desiredValue, (volatile uint8_t*)ptr); } bool core_util_atomic_cas_u16(uint16_t *ptr, uint16_t *expectedCurrentValue, uint16_t desiredValue) { uint16_t currentValue = __LDREXH((volatile uint16_t*)ptr); if (currentValue != *expectedCurrentValue) { *expectedCurrentValue = currentValue; __CLREX(); return false; } return !__STREXH(desiredValue, (volatile uint16_t*)ptr); } bool core_util_atomic_cas_u32(uint32_t *ptr, uint32_t *expectedCurrentValue, uint32_t desiredValue) { uint32_t currentValue = __LDREXW((volatile uint32_t*)ptr); if (currentValue != *expectedCurrentValue) { *expectedCurrentValue = currentValue; __CLREX(); return false; } return !__STREXW(desiredValue, (volatile uint32_t*)ptr); } uint8_t core_util_atomic_incr_u8(uint8_t *valuePtr, uint8_t delta) { uint8_t newValue; do { newValue = __LDREXB((volatile uint8_t*)valuePtr) + delta; } while (__STREXB(newValue, (volatile uint8_t*)valuePtr)); return newValue; } uint16_t core_util_atomic_incr_u16(uint16_t *valuePtr, uint16_t delta) { uint16_t newValue; do { newValue = __LDREXH((volatile uint16_t*)valuePtr) + delta; } while (__STREXH(newValue, (volatile uint16_t*)valuePtr)); return newValue; } uint32_t core_util_atomic_incr_u32(uint32_t *valuePtr, uint32_t delta) { uint32_t newValue; do { newValue = __LDREXW((volatile uint32_t*)valuePtr) + delta; } while (__STREXW(newValue, (volatile uint32_t*)valuePtr)); return newValue; } uint8_t core_util_atomic_decr_u8(uint8_t *valuePtr, uint8_t delta) { uint8_t newValue; do { newValue = __LDREXB((volatile uint8_t*)valuePtr) - delta; } while (__STREXB(newValue, (volatile uint8_t*)valuePtr)); return newValue; } uint16_t core_util_atomic_decr_u16(uint16_t *valuePtr, uint16_t delta) { uint16_t newValue; do { newValue = __LDREXH((volatile uint16_t*)valuePtr) - delta; } while (__STREXH(newValue, (volatile uint16_t*)valuePtr)); return newValue; } uint32_t core_util_atomic_decr_u32(uint32_t *valuePtr, uint32_t delta) { uint32_t newValue; do { newValue = __LDREXW((volatile uint32_t*)valuePtr) - delta; } while (__STREXW(newValue, (volatile uint32_t*)valuePtr)); return newValue; } #else bool core_util_atomic_cas_u8(uint8_t *ptr, uint8_t *expectedCurrentValue, uint8_t desiredValue) { bool success; uint8_t currentValue; core_util_critical_section_enter(); currentValue = *ptr; if (currentValue == *expectedCurrentValue) { *ptr = desiredValue; success = true; } else { *expectedCurrentValue = currentValue; success = false; } core_util_critical_section_exit(); return success; } bool core_util_atomic_cas_u16(uint16_t *ptr, uint16_t *expectedCurrentValue, uint16_t desiredValue) { bool success; uint16_t currentValue; core_util_critical_section_enter(); currentValue = *ptr; if (currentValue == *expectedCurrentValue) { *ptr = desiredValue; success = true; } else { *expectedCurrentValue = currentValue; success = false; } core_util_critical_section_exit(); return success; } bool core_util_atomic_cas_u32(uint32_t *ptr, uint32_t *expectedCurrentValue, uint32_t desiredValue) { bool success; uint32_t currentValue; core_util_critical_section_enter(); currentValue = *ptr; if (currentValue == *expectedCurrentValue) { *ptr = desiredValue; success = true; } else { *expectedCurrentValue = currentValue; success = false; } core_util_critical_section_exit(); return success; } uint8_t core_util_atomic_incr_u8(uint8_t *valuePtr, uint8_t delta) { uint8_t newValue; core_util_critical_section_enter(); newValue = *valuePtr + delta; *valuePtr = newValue; core_util_critical_section_exit(); return newValue; } uint16_t core_util_atomic_incr_u16(uint16_t *valuePtr, uint16_t delta) { uint16_t newValue; core_util_critical_section_enter(); newValue = *valuePtr + delta; *valuePtr = newValue; core_util_critical_section_exit(); return newValue; } uint32_t core_util_atomic_incr_u32(uint32_t *valuePtr, uint32_t delta) { uint32_t newValue; core_util_critical_section_enter(); newValue = *valuePtr + delta; *valuePtr = newValue; core_util_critical_section_exit(); return newValue; } uint8_t core_util_atomic_decr_u8(uint8_t *valuePtr, uint8_t delta) { uint8_t newValue; core_util_critical_section_enter(); newValue = *valuePtr - delta; *valuePtr = newValue; core_util_critical_section_exit(); return newValue; } uint16_t core_util_atomic_decr_u16(uint16_t *valuePtr, uint16_t delta) { uint16_t newValue; core_util_critical_section_enter(); newValue = *valuePtr - delta; *valuePtr = newValue; core_util_critical_section_exit(); return newValue; } uint32_t core_util_atomic_decr_u32(uint32_t *valuePtr, uint32_t delta) { uint32_t newValue; core_util_critical_section_enter(); newValue = *valuePtr - delta; *valuePtr = newValue; core_util_critical_section_exit(); return newValue; } #endif bool core_util_atomic_cas_ptr(void **ptr, void **expectedCurrentValue, void *desiredValue) { return core_util_atomic_cas_u32( (uint32_t *)ptr, (uint32_t *)expectedCurrentValue, (uint32_t)desiredValue); } void *core_util_atomic_incr_ptr(void **valuePtr, ptrdiff_t delta) { return (void *)core_util_atomic_incr_u32((uint32_t *)valuePtr, (uint32_t)delta); } void *core_util_atomic_decr_ptr(void **valuePtr, ptrdiff_t delta) { return (void *)core_util_atomic_decr_u32((uint32_t *)valuePtr, (uint32_t)delta); }