auto-measurements
Dependencies: FastPWM3 mbed-dev
Fork of Hobbyking_Cheetah_Compact by
Diff: FOC/foc.cpp
- Revision:
- 25:f5741040c4bb
- Parent:
- 24:58c2d7571207
- Child:
- 26:2b865c00d7e9
--- a/FOC/foc.cpp Fri Apr 07 16:23:39 2017 +0000 +++ b/FOC/foc.cpp Sun Apr 09 03:05:52 2017 +0000 @@ -6,6 +6,7 @@ void abc( float theta, float d, float q, float *a, float *b, float *c){ + /// Inverse DQ0 Transform /// ///Phase current amplitude = lengh of dq vector/// ///i.e. iq = 1, id = 0, peak phase current of 1/// @@ -15,6 +16,7 @@ } void dq0(float theta, float a, float b, float c, float *d, float *q){ + /// DQ0 Transform /// ///Phase current amplitude = lengh of dq vector/// ///i.e. iq = 1, id = 0, peak phase current of 1/// @@ -23,7 +25,8 @@ } void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){ - ///u,v,w amplitude = v_bus for full modulation depth/// + /// Space Vector Modulation /// + /// u,v,w amplitude = v_bus for full modulation depth /// float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f; *dtc_u = fminf(fmaxf(((u - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX); @@ -32,11 +35,11 @@ } -void zero_current(int *offset_1, int *offset_2){ +void zero_current(int *offset_1, int *offset_2){ // Measure zero-offset of the current sensors int adc1_offset = 0; int adc2_offset = 0; int n = 1024; - for (int i = 0; i<n; i++){ + for (int i = 0; i<n; i++){ // Average n samples of the ADC ADC1->CR2 |= 0x40000000; wait(.001); adc2_offset += ADC2->DR; @@ -53,26 +56,25 @@ void commutate(ControllerStruct *controller, GPIOStruct *gpio, float theta){ - - controller->loop_count ++; - if(PHASE_ORDER){ - controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); //Calculate phase currents from ADC readings + /// Commutation Loop /// + controller->loop_count ++; + if(PHASE_ORDER){ // Check current sensor ordering + controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); // Calculate phase currents from ADC readings controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); } else{ - controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); //Calculate phase currents from ADC readings + controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); controller->i_c = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); } - controller->i_a = -controller->i_b - controller->i_c; - - + controller->i_a = -controller->i_b - controller->i_c; dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents - ///Cogging Compensation Lookup/// + ///Cogging compensation lookup, doesn't actually work yet/// //int ind = theta * (128.0f/(2.0f*PI)); //float cogging_current = controller->cogging[ind]; //float cogging_current = 1.0f*cos(6*theta); - ///Controller/// + + /// PI Controller /// float i_d_error = controller->i_d_ref - controller->i_d; float i_q_error = controller->i_q_ref - controller->i_q;// + cogging_current; float v_d_ff = 2.0f*(2*controller->i_d_ref*R_PHASE); //feed-forward voltage @@ -83,28 +85,24 @@ //v_d_ff = 0; //v_q_ff = 0; - limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q)); + limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q)); // Limit integrators to prevent windup //controller->d_int = fminf(fmaxf(controller->d_int, -D_INT_LIM), D_INT_LIM); //controller->q_int = fminf(fmaxf(controller->q_int, -Q_INT_LIM), Q_INT_LIM); - controller->v_d = K_D*i_d_error + K_D*KI_D*controller->d_int;// + v_d_ff; - controller->v_q = K_Q*i_q_error + K_Q*KI_Q*controller->q_int;// + v_q_ff; + controller->v_d = K_SCALE*I_BW*i_d_error + K_SCALE*I_BW*controller->d_int;// + v_d_ff; + controller->v_q = K_SCALE*I_BW*i_q_error + K_SCALE*I_BW*controller->q_int;// + v_q_ff; //controller->v_d = v_d_ff; //controller->v_q = v_q_ff; - limit_norm(&controller->v_d, &controller->v_q, controller->v_bus); - + limit_norm(&controller->v_d, &controller->v_q, controller->v_bus); // Normalize voltage vector to lie within curcle of radius v_bus abc(controller->theta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation - //gpio->pwm_u->write(1.0f-controller->dtc_u); //write duty cycles - //gpio->pwm_v->write(1.0f-controller->dtc_v); - //gpio->pwm_w->write(1.0f-controller->dtc_w); - if(PHASE_ORDER){ - TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u); + if(PHASE_ORDER){ // Check which phase order to use, + TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u); // Write duty cycles TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v); TIM1->CCR1 = 0x708*(1.0f-controller->dtc_w); } @@ -113,25 +111,20 @@ TIM1->CCR1 = 0x708*(1.0f-controller->dtc_v); TIM1->CCR2 = 0x708*(1.0f-controller->dtc_w); } - //gpio->pwm_u->write(1.0f - .05f); //write duty cycles - //gpio->pwm_v->write(1.0f - .05f); - //gpio->pwm_w->write(1.0f - .1f); - //TIM1->CCR1 = 0x708*(1.0f-controller->dtc_u); - //TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v); - //TIM1->CCR3 = 0x708*(1.0f-controller->dtc_w); - controller->theta_elec = theta; //For some reason putting this at the front breaks thins + + controller->theta_elec = theta; //For some reason putting this at the front breaks thins - if(controller->loop_count >400){ + //if(controller->loop_count >400){ //controller->i_q_ref = -controller->i_q_ref; - controller->loop_count = 0; + // controller->loop_count = 0; //printf("%d %f\n\r", ind, cogging_current); //printf("%f\n\r", controller->theta_elec); //pc.printf("%f %f %f\n\r", controller->i_a, controller->i_b, controller->i_c); //pc.printf("%f %f\n\r", controller->i_d, controller->i_q); //pc.printf("%d %d\n\r", controller->adc1_raw, controller->adc2_raw); - } + // } } /* void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){