DRV8323RS Version
Dependencies: mbed-dev-f303 FastPWM3
PositionSensor/PositionSensor.cpp
- Committer:
- benkatz
- Date:
- 2017-05-01
- Revision:
- 26:2b865c00d7e9
- Parent:
- 25:f5741040c4bb
- Child:
- 28:8c7e29f719c5
File content as of revision 26:2b865c00d7e9:
#include "mbed.h" #include "PositionSensor.h" //#include "offset_lut.h" //#include <math.h> PositionSensorAM5147::PositionSensorAM5147(int CPR, float offset, int ppairs){ //_CPR = CPR; _CPR = CPR; _ppairs = ppairs; ElecOffset = offset; rotations = 0; spi = new SPI(PC_12, PC_11, PC_10); spi->format(8, 1); // mbed v>127 breaks 16-bit spi, so transaction is broken into 2 8-bit words spi->frequency(25000000); cs = new DigitalOut(PA_15); cs->write(1); readAngleCmd = 0xffff; MechOffset = 0; modPosition = 0; oldModPosition = 0; oldVel = 0; raw = 0; } void PositionSensorAM5147::Sample(){ cs->write(0); int raw1 = spi->write(0xFF); int raw2 = spi->write(0xFF); raw = (raw1<<8)|raw2; //raw = spi->write(readAngleCmd); raw &= 0x3FFF; //Extract last 14 bits cs->write(1); int off_1 = offset_lut[raw>>7]; int off_2 = offset_lut[((raw>>7)+1)%128]; int off_interp = off_1 + ((off_2 - off_1)*(raw - ((raw>>7)<<7))>>7); // Interpolate between lookup table entries int angle = raw + off_interp; // Correct for nonlinearity with lookup table from calibration if(angle - old_counts > _CPR/2){ rotations -= 1; } else if (angle - old_counts < -_CPR/2){ rotations += 1; } old_counts = angle; oldModPosition = modPosition; modPosition = ((6.28318530718f * ((float) angle))/ (float)_CPR); position = (6.28318530718f * ((float) angle+(_CPR*rotations)))/ (float)_CPR; MechPosition = position - MechOffset; float elec = ((6.28318530718f/(float)_CPR) * (float) ((_ppairs*angle)%_CPR)) + ElecOffset; if(elec < 0) elec += 6.28318530718f; else if(elec > 6.28318530718f) elec -= 6.28318530718f ; ElecPosition = elec; float vel; if(modPosition<.1f && oldModPosition>6.1f){ vel = (modPosition - oldModPosition + 6.28318530718f)*40000.0f; } else if(modPosition>6.1f && oldModPosition<0.1f){ vel = (modPosition - oldModPosition - 6.28318530718f)*40000.0f; } else{ vel = (modPosition-oldModPosition)*40000.0f; } int n = 16; float sum = vel; for (int i = 1; i < (n); i++){ velVec[n - i] = velVec[n-i-1]; sum += velVec[n-i]; } velVec[0] = vel; MechVelocity = sum/(float)n; ElecVelocity = MechVelocity*_ppairs; } int PositionSensorAM5147::GetRawPosition(){ return raw; } float PositionSensorAM5147::GetMechPosition(){ return MechPosition; } float PositionSensorAM5147::GetElecPosition(){ return ElecPosition; } float PositionSensorAM5147::GetMechVelocity(){ return MechVelocity; } void PositionSensorAM5147::ZeroPosition(){ rotations = 0; MechOffset = GetMechPosition(); } void PositionSensorAM5147::SetElecOffset(float offset){ ElecOffset = offset; } int PositionSensorAM5147::GetCPR(){ return _CPR; } void PositionSensorAM5147::WriteLUT(int new_lut[128]){ memcpy(offset_lut, new_lut, sizeof(offset_lut)); } PositionSensorEncoder::PositionSensorEncoder(int CPR, float offset, int ppairs) { _ppairs = ppairs; _CPR = CPR; _offset = offset; MechPosition = 0; out_old = 0; oldVel = 0; raw = 0; // Enable clock for GPIOA __GPIOA_CLK_ENABLE(); //equivalent from hal_rcc.h GPIOA->MODER |= GPIO_MODER_MODER6_1 | GPIO_MODER_MODER7_1 ; //PA6 & PA7 as Alternate Function /*!< GPIO port mode register, Address offset: 0x00 */ GPIOA->OTYPER |= GPIO_OTYPER_OT_6 | GPIO_OTYPER_OT_7 ; //PA6 & PA7 as Inputs /*!< GPIO port output type register, Address offset: 0x04 */ GPIOA->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR6 | GPIO_OSPEEDER_OSPEEDR7 ; //Low speed /*!< GPIO port output speed register, Address offset: 0x08 */ GPIOA->PUPDR |= GPIO_PUPDR_PUPDR6_1 | GPIO_PUPDR_PUPDR7_1 ; //Pull Down /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */ GPIOA->AFR[0] |= 0x22000000 ; //AF02 for PA6 & PA7 /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */ GPIOA->AFR[1] |= 0x00000000 ; //nibbles here refer to gpio8..15 /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */ // configure TIM3 as Encoder input // Enable clock for TIM3 __TIM3_CLK_ENABLE(); TIM3->CR1 = 0x0001; // CEN(Counter ENable)='1' < TIM control register 1 TIM3->SMCR = TIM_ENCODERMODE_TI12; // SMS='011' (Encoder mode 3) < TIM slave mode control register TIM3->CCMR1 = 0x1111; // CC1S='01' CC2S='01' < TIM capture/compare mode register 1, maximum digital filtering TIM3->CCMR2 = 0x0000; // < TIM capture/compare mode register 2 TIM3->CCER = 0x0011; // CC1P CC2P < TIM capture/compare enable register TIM3->PSC = 0x0000; // Prescaler = (0+1) < TIM prescaler TIM3->ARR = CPR; // IM auto-reload register TIM3->CNT = 0x000; //reset the counter before we use it // Extra Timer for velocity measurement __TIM2_CLK_ENABLE(); TIM3->CR2 = 0x030; //MMS = 101 TIM2->PSC = 0x03; //TIM2->CR2 |= TIM_CR2_TI1S; TIM2->SMCR = 0x24; //TS = 010 for ITR2, SMS = 100 (reset counter at edge) TIM2->CCMR1 = 0x3; // CC1S = 11, IC1 mapped on TRC //TIM2->CR2 |= TIM_CR2_TI1S; TIM2->CCER |= TIM_CCER_CC1P; //TIM2->CCER |= TIM_CCER_CC1NP; TIM2->CCER |= TIM_CCER_CC1E; TIM2->CR1 = 0x01; //CEN, enable timer TIM3->CR1 = 0x01; // CEN ZPulse = new InterruptIn(PC_4); ZSense = new DigitalIn(PC_4); //ZPulse = new InterruptIn(PB_0); //ZSense = new DigitalIn(PB_0); ZPulse->enable_irq(); ZPulse->rise(this, &PositionSensorEncoder::ZeroEncoderCount); //ZPulse->fall(this, &PositionSensorEncoder::ZeroEncoderCountDown); ZPulse->mode(PullDown); flag = 0; //ZTest = new DigitalOut(PC_2); //ZTest->write(1); } void PositionSensorEncoder::Sample(){ } float PositionSensorEncoder::GetMechPosition() { //returns rotor angle in radians. int raw = TIM3->CNT; float unsigned_mech = (6.28318530718f/(float)_CPR) * (float) ((raw)%_CPR); return (float) unsigned_mech;// + 6.28318530718f* (float) rotations; } float PositionSensorEncoder::GetElecPosition() { //returns rotor electrical angle in radians. int raw = TIM3->CNT; float elec = ((6.28318530718f/(float)_CPR) * (float) ((_ppairs*raw)%_CPR)) - _offset; if(elec < 0) elec += 6.28318530718f; return elec; } float PositionSensorEncoder::GetMechVelocity(){ float out = 0; float rawPeriod = TIM2->CCR1; //Clock Ticks int currentTime = TIM2->CNT; if(currentTime > 2000000){rawPeriod = currentTime;} float dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f; // +/- 1 float meas = dir*180000000.0f*(6.28318530718f/(float)_CPR)/rawPeriod; if(isinf(meas)){ meas = 1;} out = meas; //if(meas == oldVel){ // out = .9f*out_old; // } oldVel = meas; out_old = out; int n = 16; float sum = out; for (int i = 1; i < (n); i++){ velVec[n - i] = velVec[n-i-1]; sum += velVec[n-i]; } velVec[0] = out; return sum/(float)n; } float PositionSensorEncoder::GetElecVelocity(){ return _ppairs*GetMechVelocity(); } void PositionSensorEncoder::ZeroEncoderCount(void){ if (ZSense->read() == 1 & flag == 0){ if (ZSense->read() == 1){ GPIOC->ODR ^= (1 << 4); TIM3->CNT = 0x000; //state = !state; //ZTest->write(state); GPIOC->ODR ^= (1 << 4); //flag = 1; } } } void PositionSensorEncoder::ZeroPosition(void){ } void PositionSensorEncoder::ZeroEncoderCountDown(void){ if (ZSense->read() == 0){ if (ZSense->read() == 0){ GPIOC->ODR ^= (1 << 4); flag = 0; float dir = -2.0f*(float)(((TIM3->CR1)>>4)&1)+1.0f; if(dir != dir){ dir = dir; rotations += dir; } GPIOC->ODR ^= (1 << 4); } } } void PositionSensorEncoder::SetElecOffset(float offset){ } int PositionSensorEncoder::GetRawPosition(void){ return 0; } int PositionSensorEncoder::GetCPR(){ return _CPR; } void PositionSensorEncoder::WriteLUT(int new_lut[128]){ memcpy(offset_lut, new_lut, sizeof(offset_lut)); }