Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed-dev-f303 FastPWM3
Dependents: GT_MOTOR_24NM_V03 GT_MOTOR_24NM_V03_PT1000CalTemp
main.cpp
- Committer:
- benkatz
- Date:
- 2018-03-02
- Revision:
- 36:d88fd41f60a6
- Parent:
- 34:51647c6c500d
- Child:
- 37:c0f352d6e8e3
File content as of revision 36:d88fd41f60a6:
/// high-bandwidth 3-phase motor control, for robots
/// Written by benkatz, with much inspiration from bayleyw, nkirkby, scolton, David Otten, and others
/// Hardware documentation can be found at build-its.blogspot.com
/// Written for the STM32F446, but can be implemented on other STM32 MCU's with some further register-diddling
#define REST_MODE 0
#define CALIBRATION_MODE 1
#define MOTOR_MODE 2
#define SETUP_MODE 4
#define ENCODER_MODE 5
#define VERSION_NUM "1.2"
float __float_reg[64]; // Floats stored in flash
int __int_reg[256]; // Ints stored in flash. Includes position sensor calibration lookup table
#include "mbed.h"
#include "PositionSensor.h"
#include "structs.h"
#include "foc.h"
#include "calibration.h"
#include "hw_setup.h"
#include "math_ops.h"
#include "current_controller_config.h"
#include "hw_config.h"
#include "motor_config.h"
#include "stm32f4xx_flash.h"
#include "FlashWriter.h"
#include "user_config.h"
#include "PreferenceWriter.h"
PreferenceWriter prefs(6);
GPIOStruct gpio;
ControllerStruct controller;
COMStruct com;
VelocityEstimatorStruct velocity;
//using namespace CANnucleo;
CAN can(PB_8, PB_9); // CAN Rx pin name, CAN Tx pin name
CANMessage rxMsg;
CANMessage txMsg;
Serial pc(PA_2, PA_3);
PositionSensorAM5147 spi(16384, 0.0, NPP);
PositionSensorEncoder encoder(4096, 0, NPP);
DigitalOut toggle(PA_0);
volatile int count = 0;
volatile int state = REST_MODE;
volatile int state_change;
#define P_MIN -12.5f
#define P_MAX 12.5f
#define V_MIN -30.0f
#define V_MAX 30.0f
#define KP_MIN 0.0f
#define KP_MAX 500.0f
#define KD_MIN 0.0f
#define KD_MAX 5.0f
#define T_MIN -18.0f
#define T_MAX 18.0f
/// CAN Reply Packet Structure ///
/// 16 bit position, between -4*pi and 4*pi
/// 12 bit velocity, between -30 and + 30 rad/s
/// 12 bit current, between -40 and 40;
/// CAN Packet is 5 8-bit words
/// Formatted as follows. For each quantity, bit 0 is LSB
/// 0: [position[15-8]]
/// 1: [position[7-0]]
/// 2: [velocity[11-4]]
/// 3: [velocity[3-0], current[11-8]]
/// 4: [current[7-0]]
void pack_reply(CANMessage *msg, float p, float v, float t){
int p_int = float_to_uint(p, P_MIN, P_MAX, 16);
int v_int = float_to_uint(v, V_MIN, V_MAX, 12);
int t_int = float_to_uint(t, -T_MAX, T_MAX, 12);
msg->data[0] = CAN_ID;
msg->data[1] = p_int>>8;
msg->data[2] = p_int&0xFF;
msg->data[3] = v_int>>4;
msg->data[4] = ((v_int&0xF)<<4) + (t_int>>8);
msg->data[5] = t_int&0xFF;
}
/// CAN Command Packet Structure ///
/// 16 bit position command, between -4*pi and 4*pi
/// 12 bit velocity command, between -30 and + 30 rad/s
/// 12 bit kp, between 0 and 500 N-m/rad
/// 12 bit kd, between 0 and 100 N-m*s/rad
/// 12 bit feed forward torque, between -18 and 18 N-m
/// CAN Packet is 8 8-bit words
/// Formatted as follows. For each quantity, bit 0 is LSB
/// 0: [position[15-8]]
/// 1: [position[7-0]]
/// 2: [velocity[11-4]]
/// 3: [velocity[3-0], kp[11-8]]
/// 4: [kp[7-0]]
/// 5: [kd[11-4]]
/// 6: [kd[3-0], torque[11-8]]
/// 7: [torque[7-0]]
void unpack_cmd(CANMessage msg, ControllerStruct * controller){
int p_int = (msg.data[0]<<8)|msg.data[1];
int v_int = (msg.data[2]<<4)|(msg.data[3]>>4);
int kp_int = ((msg.data[3]&0xF)<<8)|msg.data[4];
int kd_int = (msg.data[5]<<4)|(msg.data[6]>>4);
int t_int = ((msg.data[6]&0xF)<<8)|msg.data[7];
controller->p_des = uint_to_float(p_int, P_MIN, P_MAX, 16);
controller->v_des = uint_to_float(v_int, V_MIN, V_MAX, 12);
controller->kp = uint_to_float(kp_int, KP_MIN, KP_MAX, 12);
controller->kd = uint_to_float(kd_int, KD_MIN, KD_MAX, 12);
controller->t_ff = uint_to_float(t_int, T_MIN, T_MAX, 12);
//printf("Received ");
//printf("%.3f %.3f %.3f %.3f %.3f %.3f", controller->p_des, controller->v_des, controller->kp, controller->kd, controller->t_ff, controller->i_q_ref);
//printf("\n\r");
}
void onMsgReceived() {
//msgAvailable = true;
//printf("%.3f %.3f %.3f\n\r", controller.theta_mech, controller.dtheta_mech, controller.i_q);
can.read(rxMsg);
if((rxMsg.id == CAN_ID)){
controller.timeout = 0;
if(((rxMsg.data[0]==0xFF) & (rxMsg.data[1]==0xFF) & (rxMsg.data[2]==0xFF) & (rxMsg.data[3]==0xFF) & (rxMsg.data[4]==0xFF) & (rxMsg.data[5]==0xFF) & (rxMsg.data[6]==0xFF) & (rxMsg.data[7]==0xFC))){
state = MOTOR_MODE;
state_change = 1;
}
else if(((rxMsg.data[0]==0xFF) & (rxMsg.data[1]==0xFF) & (rxMsg.data[2]==0xFF) & (rxMsg.data[3]==0xFF) * (rxMsg.data[4]==0xFF) & (rxMsg.data[5]==0xFF) & (rxMsg.data[6]==0xFF) & (rxMsg.data[7]==0xFD))){
state = REST_MODE;
state_change = 1;
GPIOC->ODR &= !(1 << 5);
}
else if(((rxMsg.data[0]==0xFF) & (rxMsg.data[1]==0xFF) & (rxMsg.data[2]==0xFF) & (rxMsg.data[3]==0xFF) * (rxMsg.data[4]==0xFF) & (rxMsg.data[5]==0xFF) & (rxMsg.data[6]==0xFF) & (rxMsg.data[7]==0xFE))){
spi.ZeroPosition();
}
else if(state == MOTOR_MODE){
unpack_cmd(rxMsg, &controller);
pack_reply(&txMsg, controller.theta_mech, controller.dtheta_mech, controller.i_q_filt*KT_OUT);
can.write(txMsg);
}
}
}
void enter_menu_state(void){
printf("\n\r\n\r\n\r");
printf(" Commands:\n\r");
printf(" m - Motor Mode\n\r");
printf(" c - Calibrate Encoder\n\r");
printf(" s - Setup\n\r");
printf(" e - Display Encoder\n\r");
printf(" esc - Exit to Menu\n\r");
state_change = 0;
gpio.enable->write(0);
}
void enter_setup_state(void){
printf("\n\r\n\r Configuration Options \n\r\n\n");
printf(" %-4s %-31s %-5s %-6s %-5s\n\r\n\r", "prefix", "parameter", "min", "max", "current value");
printf(" %-4s %-31s %-5s %-6s %.1f\n\r", "b", "Current Bandwidth (Hz)", "100", "2000", I_BW);
printf(" %-4s %-31s %-5s %-6s %-5i\n\r", "i", "CAN ID", "0", "127", CAN_ID);
printf(" %-4s %-31s %-5s %-6s %-5i\n\r", "m", "CAN Master ID", "0", "127", CAN_MASTER);
printf(" %-4s %-31s %-5s %-6s %.1f\n\r", "l", "Torque Limit (N-m)", "0.0", "18.0", TORQUE_LIMIT);
printf(" %-4s %-31s %-5s %-6s %d\n\r", "t", "CAN Timeout (cycles)(0 = none)", "0", "100000", CAN_TIMEOUT);
printf("\n\r To change a value, type 'prefix''value''ENTER'\n\r i.e. 'b1000''ENTER'\n\r\n\r");
state_change = 0;
}
void enter_torque_mode(void){
gpio.enable->write(1); // Enable gate drive
reset_foc(&controller); // Tesets integrators, and other control loop parameters
wait(.001);
controller.i_d_ref = 0;
controller.i_q_ref = 0; // Current Setpoints
GPIOC->ODR |= (1 << 5); // Turn on status LED
state_change = 0;
printf("\n\r Entering Motor Mode \n\r");
}
void calibrate(void){
gpio.enable->write(1); // Enable gate drive
GPIOC->ODR |= (1 << 5); // Turn on status LED
order_phases(&spi, &gpio, &controller, &prefs); // Check phase ordering
calibrate(&spi, &gpio, &controller, &prefs); // Perform calibration procedure
GPIOC->ODR &= !(1 << 5); // Turn off status LED
wait(.2);
gpio.enable->write(0); // Turn off gate drive
printf("\n\r Calibration complete. Press 'esc' to return to menu\n\r");
state_change = 0;
}
void print_encoder(void){
spi.Sample();
wait(.001);
printf(" Mechanical Angle: %f Electrical Angle: %f Raw: %d\n\r", spi.GetMechPosition(), spi.GetElecPosition(), spi.GetRawPosition());
wait(.05);
}
/// Current Sampling Interrupt ///
/// This runs at 40 kHz, regardless of of the mode the controller is in ///
extern "C" void TIM1_UP_TIM10_IRQHandler(void) {
if (TIM1->SR & TIM_SR_UIF ) {
//toggle = 1;
///Sample current always ///
ADC1->CR2 |= 0x40000000; // Begin sample and conversion
//volatile int delay;
//for (delay = 0; delay < 55; delay++);
controller.adc2_raw = ADC2->DR; // Read ADC1 and ADC2 Data Registers
controller.adc1_raw = ADC1->DR;
///
/// Check state machine state, and run the appropriate function ///
//printf("%d\n\r", state);
switch(state){
case REST_MODE: // Do nothing until
if(state_change){
enter_menu_state();
}
break;
case CALIBRATION_MODE: // Run encoder calibration procedure
if(state_change){
calibrate();
}
break;
case MOTOR_MODE: // Run torque control
if(state_change){
enter_torque_mode();
count = 0;
}
else{
count++;
//toggle.write(1);
controller.theta_elec = spi.GetElecPosition();
controller.theta_mech = (1.0f/GR)*spi.GetMechPosition();
controller.dtheta_mech = (1.0f/GR)*spi.GetMechVelocity();
//TIM1->CCR3 = 0x708*(1.0f);
//TIM1->CCR1 = 0x708*(1.0f);
//TIM1->CCR2 = 0x708*(1.0f);
//controller.i_q_ref = controller.t_ff/KT_OUT;
torque_control(&controller);
if((controller.timeout > CAN_TIMEOUT) && (CAN_TIMEOUT > 0)){
controller.i_d_ref = 0;
controller.i_q_ref = 0;
}
//controller.i_q_ref = .4f;
commutate(&controller, &gpio, controller.theta_elec); // Run current loop
spi.Sample(); // Sample position sensor
//toggle.write(0);
controller.timeout += 1;
if(count == 1000){
count = 0;
//wait(.001);
//printf("%f\n\r", controller.theta_elec);
}
}
break;
case SETUP_MODE:
if(state_change){
enter_setup_state();
}
break;
case ENCODER_MODE:
print_encoder();
break;
}
}
TIM1->SR = 0x0; // reset the status register
}
char cmd_val[8] = {0};
char cmd_id = 0;
char char_count = 0;
/// Manage state machine with commands from serial terminal or configurator gui ///
/// Called when data received over serial ///
void serial_interrupt(void){
while(pc.readable()){
char c = pc.getc();
if(c == 27){
state = REST_MODE;
state_change = 1;
char_count = 0;
cmd_id = 0;
GPIOC->ODR &= !(1 << 5);
for(int i = 0; i<8; i++){cmd_val[i] = 0;}
}
if(state == REST_MODE){
switch (c){
case 'c':
state = CALIBRATION_MODE;
state_change = 1;
break;
case 'm':
state = MOTOR_MODE;
state_change = 1;
break;
case 'e':
state = ENCODER_MODE;
state_change = 1;
break;
case 's':
state = SETUP_MODE;
state_change = 1;
break;
}
}
else if(state == SETUP_MODE){
if(c == 13){
switch (cmd_id){
case 'b':
I_BW = fmaxf(fminf(atof(cmd_val), 2000.0f), 100.0f);
break;
case 'i':
CAN_ID = atoi(cmd_val);
break;
case 'm':
CAN_MASTER = atoi(cmd_val);
break;
case 'l':
TORQUE_LIMIT = fmaxf(fminf(atof(cmd_val), 18.0f), 0.0f);
break;
case 't':
CAN_TIMEOUT = atoi(cmd_val);
break;
default:
printf("\n\r '%c' Not a valid command prefix\n\r\n\r", cmd_id);
break;
}
if (!prefs.ready()) prefs.open();
prefs.flush(); // Write new prefs to flash
prefs.close();
prefs.load();
state_change = 1;
char_count = 0;
cmd_id = 0;
for(int i = 0; i<8; i++){cmd_val[i] = 0;}
}
else{
if(char_count == 0){cmd_id = c;}
else{
cmd_val[char_count-1] = c;
}
pc.putc(c);
char_count++;
}
}
else if (state == ENCODER_MODE){
switch (c){
case 27:
state = REST_MODE;
state_change = 1;
break;
}
}
}
}
int main() {
controller.v_bus = V_BUS;
controller.mode = 0;
Init_All_HW(&gpio); // Setup PWM, ADC, GPIO
wait(.1);
gpio.enable->write(1);
TIM1->CCR3 = 0x708*(1.0f); // Write duty cycles
TIM1->CCR2 = 0x708*(1.0f);
TIM1->CCR1 = 0x708*(1.0f);
zero_current(&controller.adc1_offset, &controller.adc2_offset); // Measure current sensor zero-offset
gpio.enable->write(0);
reset_foc(&controller); // Reset current controller
TIM1->CR1 ^= TIM_CR1_UDIS;
//TIM1->CR1 |= TIM_CR1_UDIS; //enable interrupt
wait(.1);
NVIC_SetPriority(TIM5_IRQn, 2); // set interrupt priority
can.frequency(1000000); // set bit rate to 1Mbps
can.filter(CAN_ID<<21, 0xFFE00004, CANStandard, 0);
//can.filter(CAN_ID, 0xF, CANStandard, 0);
can.attach(&onMsgReceived); // attach 'CAN receive-complete' interrupt handler
txMsg.id = CAN_MASTER;
txMsg.len = 6;
rxMsg.len = 8;
prefs.load(); // Read flash
spi.SetElecOffset(E_OFFSET); // Set position sensor offset
int lut[128] = {0};
memcpy(&lut, &ENCODER_LUT, sizeof(lut));
spi.WriteLUT(lut); // Set potision sensor nonlinearity lookup table
pc.baud(921600); // set serial baud rate
wait(.01);
pc.printf("\n\r\n\r HobbyKing Cheetah\n\r\n\r");
wait(.01);
printf("\n\r Debug Info:\n\r");
printf(" Firmware Version: %s\n\r", VERSION_NUM);
printf(" ADC1 Offset: %d ADC2 Offset: %d\n\r", controller.adc1_offset, controller.adc2_offset);
printf(" Position Sensor Electrical Offset: %.4f\n\r", E_OFFSET);
printf(" CAN ID: %d\n\r", CAN_ID);
pc.attach(&serial_interrupt); // attach serial interrupt
state_change = 1;
while(1) {
}
}