Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed-dev-f303 FastPWM3
Dependents: GT_MOTOR_24NM_V03 GT_MOTOR_24NM_V03_PT1000CalTemp
Diff: FOC/foc.cpp
- Revision:
- 25:f5741040c4bb
- Parent:
- 24:58c2d7571207
- Child:
- 26:2b865c00d7e9
--- a/FOC/foc.cpp Fri Apr 07 16:23:39 2017 +0000
+++ b/FOC/foc.cpp Sun Apr 09 03:05:52 2017 +0000
@@ -6,6 +6,7 @@
void abc( float theta, float d, float q, float *a, float *b, float *c){
+ /// Inverse DQ0 Transform ///
///Phase current amplitude = lengh of dq vector///
///i.e. iq = 1, id = 0, peak phase current of 1///
@@ -15,6 +16,7 @@
}
void dq0(float theta, float a, float b, float c, float *d, float *q){
+ /// DQ0 Transform ///
///Phase current amplitude = lengh of dq vector///
///i.e. iq = 1, id = 0, peak phase current of 1///
@@ -23,7 +25,8 @@
}
void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){
- ///u,v,w amplitude = v_bus for full modulation depth///
+ /// Space Vector Modulation ///
+ /// u,v,w amplitude = v_bus for full modulation depth ///
float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f;
*dtc_u = fminf(fmaxf(((u - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX);
@@ -32,11 +35,11 @@
}
-void zero_current(int *offset_1, int *offset_2){
+void zero_current(int *offset_1, int *offset_2){ // Measure zero-offset of the current sensors
int adc1_offset = 0;
int adc2_offset = 0;
int n = 1024;
- for (int i = 0; i<n; i++){
+ for (int i = 0; i<n; i++){ // Average n samples of the ADC
ADC1->CR2 |= 0x40000000;
wait(.001);
adc2_offset += ADC2->DR;
@@ -53,26 +56,25 @@
void commutate(ControllerStruct *controller, GPIOStruct *gpio, float theta){
-
- controller->loop_count ++;
- if(PHASE_ORDER){
- controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); //Calculate phase currents from ADC readings
+ /// Commutation Loop ///
+ controller->loop_count ++;
+ if(PHASE_ORDER){ // Check current sensor ordering
+ controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); // Calculate phase currents from ADC readings
controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
}
else{
- controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); //Calculate phase currents from ADC readings
+ controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
controller->i_c = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);
}
- controller->i_a = -controller->i_b - controller->i_c;
-
-
+ controller->i_a = -controller->i_b - controller->i_c;
dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents
- ///Cogging Compensation Lookup///
+ ///Cogging compensation lookup, doesn't actually work yet///
//int ind = theta * (128.0f/(2.0f*PI));
//float cogging_current = controller->cogging[ind];
//float cogging_current = 1.0f*cos(6*theta);
- ///Controller///
+
+ /// PI Controller ///
float i_d_error = controller->i_d_ref - controller->i_d;
float i_q_error = controller->i_q_ref - controller->i_q;// + cogging_current;
float v_d_ff = 2.0f*(2*controller->i_d_ref*R_PHASE); //feed-forward voltage
@@ -83,28 +85,24 @@
//v_d_ff = 0;
//v_q_ff = 0;
- limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q));
+ limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q)); // Limit integrators to prevent windup
//controller->d_int = fminf(fmaxf(controller->d_int, -D_INT_LIM), D_INT_LIM);
//controller->q_int = fminf(fmaxf(controller->q_int, -Q_INT_LIM), Q_INT_LIM);
- controller->v_d = K_D*i_d_error + K_D*KI_D*controller->d_int;// + v_d_ff;
- controller->v_q = K_Q*i_q_error + K_Q*KI_Q*controller->q_int;// + v_q_ff;
+ controller->v_d = K_SCALE*I_BW*i_d_error + K_SCALE*I_BW*controller->d_int;// + v_d_ff;
+ controller->v_q = K_SCALE*I_BW*i_q_error + K_SCALE*I_BW*controller->q_int;// + v_q_ff;
//controller->v_d = v_d_ff;
//controller->v_q = v_q_ff;
- limit_norm(&controller->v_d, &controller->v_q, controller->v_bus);
-
+ limit_norm(&controller->v_d, &controller->v_q, controller->v_bus); // Normalize voltage vector to lie within curcle of radius v_bus
abc(controller->theta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages
svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation
- //gpio->pwm_u->write(1.0f-controller->dtc_u); //write duty cycles
- //gpio->pwm_v->write(1.0f-controller->dtc_v);
- //gpio->pwm_w->write(1.0f-controller->dtc_w);
- if(PHASE_ORDER){
- TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u);
+ if(PHASE_ORDER){ // Check which phase order to use,
+ TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u); // Write duty cycles
TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v);
TIM1->CCR1 = 0x708*(1.0f-controller->dtc_w);
}
@@ -113,25 +111,20 @@
TIM1->CCR1 = 0x708*(1.0f-controller->dtc_v);
TIM1->CCR2 = 0x708*(1.0f-controller->dtc_w);
}
- //gpio->pwm_u->write(1.0f - .05f); //write duty cycles
- //gpio->pwm_v->write(1.0f - .05f);
- //gpio->pwm_w->write(1.0f - .1f);
- //TIM1->CCR1 = 0x708*(1.0f-controller->dtc_u);
- //TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v);
- //TIM1->CCR3 = 0x708*(1.0f-controller->dtc_w);
- controller->theta_elec = theta; //For some reason putting this at the front breaks thins
+
+ controller->theta_elec = theta; //For some reason putting this at the front breaks thins
- if(controller->loop_count >400){
+ //if(controller->loop_count >400){
//controller->i_q_ref = -controller->i_q_ref;
- controller->loop_count = 0;
+ // controller->loop_count = 0;
//printf("%d %f\n\r", ind, cogging_current);
//printf("%f\n\r", controller->theta_elec);
//pc.printf("%f %f %f\n\r", controller->i_a, controller->i_b, controller->i_c);
//pc.printf("%f %f\n\r", controller->i_d, controller->i_q);
//pc.printf("%d %d\n\r", controller->adc1_raw, controller->adc2_raw);
- }
+ // }
}
/*
void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){