Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed-dev-f303 FastPWM3
foc.cpp
00001 00002 #include "foc.h" 00003 using namespace FastMath; 00004 00005 00006 void abc( float theta, float d, float q, float *a, float *b, float *c){ 00007 /// Inverse DQ0 Transform /// 00008 ///Phase current amplitude = lengh of dq vector/// 00009 ///i.e. iq = 1, id = 0, peak phase current of 1/// 00010 float cf = FastCos(theta); 00011 float sf = FastSin(theta); 00012 00013 *a = cf*d - sf*q; // Faster Inverse DQ0 transform 00014 *b = (0.86602540378f*sf-.5f*cf)*d - (-0.86602540378f*cf-.5f*sf)*q; 00015 *c = (-0.86602540378f*sf-.5f*cf)*d - (0.86602540378f*cf-.5f*sf)*q; 00016 } 00017 00018 00019 void dq0(float theta, float a, float b, float c, float *d, float *q){ 00020 /// DQ0 Transform /// 00021 ///Phase current amplitude = lengh of dq vector/// 00022 ///i.e. iq = 1, id = 0, peak phase current of 1/// 00023 00024 float cf = FastCos(theta); 00025 float sf = FastSin(theta); 00026 00027 *d = 0.6666667f*(cf*a + (0.86602540378f*sf-.5f*cf)*b + (-0.86602540378f*sf-.5f*cf)*c); ///Faster DQ0 Transform 00028 *q = 0.6666667f*(-sf*a - (-0.86602540378f*cf-.5f*sf)*b - (0.86602540378f*cf-.5f*sf)*c); 00029 00030 } 00031 00032 void svm(float v_bus, float u, float v, float w, int i_sector, float *dtc_u, float *dtc_v, float *dtc_w){ 00033 /// Space Vector Modulation /// 00034 /// u,v,w amplitude = v_bus for full modulation depth /// 00035 00036 float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))*0.5f; 00037 00038 // Dead-time compensation 00039 float u_comp = DTC_COMP*(-(i_sector==4) + (i_sector==3)); 00040 float v_comp = DTC_COMP*(-(i_sector==2) + (i_sector==5)); 00041 float w_comp = DTC_COMP*((i_sector==6) - (i_sector==1)); 00042 00043 00044 *dtc_u = fminf(fmaxf((.5f*(u -v_offset)/(v_bus*(DTC_MAX-DTC_MIN)) + (DTC_MAX+DTC_MIN)*.5f + u_comp), DTC_MIN), DTC_MAX); 00045 *dtc_v = fminf(fmaxf((.5f*(v -v_offset)/(v_bus*(DTC_MAX-DTC_MIN)) + (DTC_MAX+DTC_MIN)*.5f + v_comp), DTC_MIN), DTC_MAX); 00046 *dtc_w = fminf(fmaxf((.5f*(w -v_offset)/(v_bus*(DTC_MAX-DTC_MIN)) + (DTC_MAX+DTC_MIN)*.5f + w_comp), DTC_MIN), DTC_MAX); 00047 00048 /* 00049 sinusoidal pwm 00050 *dtc_u = fminf(fmaxf((u/v_bus + .5f), DTC_MIN), DTC_MAX); 00051 *dtc_v = fminf(fmaxf((v/v_bus + .5f), DTC_MIN), DTC_MAX); 00052 *dtc_w = fminf(fmaxf((w/v_bus + .5f), DTC_MIN), DTC_MAX); 00053 */ 00054 00055 00056 } 00057 00058 void zero_current(int *offset_1, int *offset_2){ // Measure zero-offset of the current sensors 00059 int adc1_offset = 0; 00060 int adc2_offset = 0; 00061 int n = 1024; 00062 for (int i = 0; i<n; i++){ // Average n samples of the ADC 00063 TIM1->CCR3 = (PWM_ARR>>1)*(1.0f); // Write duty cycles 00064 TIM1->CCR2 = (PWM_ARR>>1)*(1.0f); 00065 TIM1->CCR1 = (PWM_ARR>>1)*(1.0f); 00066 ADC1->CR2 |= 0x40000000; // Begin sample and conversion 00067 wait(.001); 00068 adc2_offset += ADC2->DR; 00069 adc1_offset += ADC1->DR; 00070 } 00071 *offset_1 = adc1_offset/n; 00072 *offset_2 = adc2_offset/n; 00073 } 00074 00075 void init_controller_params(ControllerStruct *controller){ 00076 controller->ki_d = KI_D; 00077 controller->ki_q = KI_Q; 00078 controller->k_d = K_SCALE*I_BW; 00079 controller->k_q = K_SCALE*I_BW; 00080 controller->alpha = 1.0f - 1.0f/(1.0f - DT*I_BW*2.0f*PI); 00081 for(int i = 0; i<128; i++) 00082 { 00083 controller->inverter_tab[i] = 1.0f + 1.2f*exp(-0.0078125f*i/.032f); 00084 } 00085 } 00086 00087 void reset_foc(ControllerStruct *controller){ 00088 TIM1->CCR3 = (PWM_ARR>>1)*(0.5f); 00089 TIM1->CCR1 = (PWM_ARR>>1)*(0.5f); 00090 TIM1->CCR2 = (PWM_ARR>>1)*(0.5f); 00091 controller->i_d_ref = 0; 00092 controller->i_q_ref = 0; 00093 controller->i_d = 0; 00094 controller->i_q = 0; 00095 controller->i_q_filt = 0; 00096 controller->q_int = 0; 00097 controller->d_int = 0; 00098 controller->v_q = 0; 00099 controller->v_d = 0; 00100 controller->otw_flag = 0; 00101 00102 } 00103 00104 void reset_observer(ObserverStruct *observer){ 00105 00106 observer->temperature = 25.0f; 00107 observer->temp_measured = 25.0f; 00108 //observer->resistance = .1f; 00109 } 00110 00111 void limit_current_ref (ControllerStruct *controller){ 00112 float i_q_max_limit = (0.5774f*controller->v_bus - controller->dtheta_elec*WB)/R_PHASE; 00113 float i_q_min_limit = (-0.5774f*controller->v_bus - controller->dtheta_elec*WB)/R_PHASE; 00114 controller->i_q_ref = fmaxf(fminf(i_q_max_limit, controller->i_q_ref), i_q_min_limit); 00115 } 00116 00117 void update_observer(ControllerStruct *controller, ObserverStruct *observer) 00118 { 00119 /// Update observer estimates /// 00120 // Resistance observer // 00121 // Temperature Observer // 00122 observer->delta_t = (float)observer->temperature - T_AMBIENT; 00123 float i_sq = controller->i_d*controller->i_d + controller->i_q*controller->i_q; 00124 observer->q_in = (R_NOMINAL*1.5f)*(1.0f + .00393f*observer->delta_t)*i_sq; 00125 observer->q_out = observer->delta_t*R_TH; 00126 observer->temperature += (INV_M_TH*DT)*(observer->q_in-observer->q_out); 00127 00128 //float r_d = (controller->v_d*(DTC_MAX-DTC_MIN) + SQRT3*controller->dtheta_elec*(L_Q*controller->i_q))/(controller->i_d*SQRT3); 00129 float r_q = (controller->v_q*(DTC_MAX-DTC_MIN) - SQRT3*controller->dtheta_elec*(L_D*controller->i_d + WB))/(controller->i_q*SQRT3); 00130 observer->resistance = r_q;//(r_d*controller->i_d + r_q*controller->i_q)/(controller->i_d + controller->i_q); // voltages more accurate at higher duty cycles 00131 00132 //observer->resistance = controller->v_q/controller->i_q; 00133 if(isnan(observer->resistance) || isinf(observer->resistance)){observer->resistance = R_NOMINAL;} 00134 float t_raw = ((T_AMBIENT + ((observer->resistance/R_NOMINAL) - 1.0f)*254.5f)); 00135 if(t_raw > 200.0f){t_raw = 200.0f;} 00136 else if(t_raw < 0.0f){t_raw = 0.0f;} 00137 observer->temp_measured = .999f*observer->temp_measured + .001f*t_raw; 00138 float e = (float)observer->temperature - observer->temp_measured; 00139 observer->trust = (1.0f - .004f*fminf(abs(controller->dtheta_elec), 250.0f)) * (.01f*(fminf(i_sq, 100.0f))); 00140 observer->temperature -= observer->trust*.0001f*e; 00141 //printf("%.3f\n\r", e); 00142 00143 if(observer->temperature > TEMP_MAX){controller->otw_flag = 1;} 00144 else{controller->otw_flag = 0;} 00145 } 00146 00147 float linearize_dtc(ControllerStruct *controller, float dtc) 00148 { 00149 float duty = fmaxf(fminf(abs(dtc), .999f), 0.0f);; 00150 int index = (int) (duty*127.0f); 00151 float val1 = controller->inverter_tab[index]; 00152 float val2 = controller->inverter_tab[index+1]; 00153 return val1 + (val2 - val1)*(duty*128.0f - (float)index); 00154 } 00155 00156 void field_weaken(ControllerStruct *controller) 00157 { 00158 /// Field Weakening /// 00159 00160 controller->fw_int += .001f*(0.5f*OVERMODULATION*controller->v_bus - controller->v_ref); 00161 controller->fw_int = fmaxf(fminf(controller->fw_int, 0.0f), -I_FW_MAX); 00162 controller->i_d_ref = controller->fw_int; 00163 float q_max = sqrt(controller->i_max*controller->i_max - controller->i_d_ref*controller->i_d_ref); 00164 controller->i_q_ref = fmaxf(fminf(controller->i_q_ref, q_max), -q_max); 00165 //float i_cmd_mag_sq = controller->i_d_ref*controller->i_d_ref + controller->i_q_ref*controller->i_q_ref; 00166 00167 } 00168 void commutate(ControllerStruct *controller, ObserverStruct *observer, GPIOStruct *gpio, float theta) 00169 { 00170 /// Commutation Loop /// 00171 controller->loop_count ++; 00172 if(PHASE_ORDER){ // Check current sensor ordering 00173 controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); // Calculate phase currents from ADC readings 00174 controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); 00175 } 00176 else{ 00177 controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); 00178 controller->i_c = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); 00179 } 00180 controller->i_a = -controller->i_b - controller->i_c; 00181 if((abs(controller->i_b) > 41.0f)|(abs(controller->i_c) > 41.0f)|(abs(controller->i_a) > 41.0f)){controller->oc_flag = 1;} 00182 00183 float s = FastSin(theta); 00184 float c = FastCos(theta); 00185 dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents 00186 //controller->i_d = 0.6666667f*(c*controller->i_a + (0.86602540378f*s-.5f*c)*controller->i_b + (-0.86602540378f*s-.5f*c)*controller->i_c); ///Faster DQ0 Transform 00187 //controller->i_q = 0.6666667f*(-s*controller->i_a - (-0.86602540378f*c-.5f*s)*controller->i_b - (0.86602540378f*c-.5f*s)*controller->i_c); 00188 00189 controller->i_q_filt = 0.95f*controller->i_q_filt + 0.05f*controller->i_q; 00190 controller->i_d_filt = 0.95f*controller->i_d_filt + 0.05f*controller->i_d; 00191 00192 00193 // Filter the current references to the desired closed-loop bandwidth 00194 //controller->i_d_ref_filt = (1.0f-controller->alpha)*controller->i_d_ref_filt + controller->alpha*controller->i_d_ref; 00195 //controller->i_q_ref_filt = (1.0f-controller->alpha)*controller->i_q_ref_filt + controller->alpha*controller->i_q_ref; 00196 00197 controller->i_max = I_MAX*(!controller->otw_flag) + I_MAX_CONT*controller->otw_flag; 00198 00199 // Temperature Controller // 00200 /* 00201 if(observer->temperature > TEMP_MAX) 00202 { 00203 float qdot_des = 1.0f*(TEMP_MAX - observer->temperature); 00204 float i_limit = sqrt((qdot_des + observer->q_out)/(R_NOMINAL*1.5f)); 00205 controller->i_max = fmaxf(fminf(i_limit, I_MAX), I_MAX_CONT); 00206 } 00207 else{controller->i_max = I_MAX;} 00208 */ 00209 00210 limit_norm(&controller->i_d_ref, &controller->i_q_ref, controller->i_max); 00211 00212 /// PI Controller /// 00213 float i_d_error = controller->i_d_ref - controller->i_d; 00214 float i_q_error = controller->i_q_ref - controller->i_q;// + cogging_current; 00215 00216 // Calculate feed-forward voltages // 00217 float v_d_ff = SQRT3*(0.0f*controller->i_d_ref*R_PHASE - controller->dtheta_elec*L_Q*controller->i_q); //feed-forward voltages 00218 float v_q_ff = SQRT3*(0.0f*controller->i_q_ref*R_PHASE + controller->dtheta_elec*(L_D*controller->i_d + 0.0f*WB)); 00219 00220 // Integrate Error // 00221 controller->d_int += controller->k_d*controller->ki_d*i_d_error; 00222 controller->q_int += controller->k_q*controller->ki_q*i_q_error; 00223 00224 controller->d_int = fmaxf(fminf(controller->d_int, OVERMODULATION*controller->v_bus), - OVERMODULATION*controller->v_bus); 00225 controller->q_int = fmaxf(fminf(controller->q_int, OVERMODULATION*controller->v_bus), - OVERMODULATION*controller->v_bus); 00226 00227 //limit_norm(&controller->d_int, &controller->q_int, OVERMODULATION*controller->v_bus); 00228 controller->v_d = controller->k_d*i_d_error + controller->d_int;// + v_d_ff; 00229 controller->v_q = controller->k_q*i_q_error + controller->q_int;// + v_q_ff; 00230 //controller->v_q = 0.0f; 00231 //controller->v_d = 1.0f*controller->v_bus; 00232 controller->v_ref = sqrt(controller->v_d*controller->v_d + controller->v_q*controller->v_q); 00233 00234 limit_norm(&controller->v_d, &controller->v_q, OVERMODULATION*controller->v_bus); // Normalize voltage vector to lie within curcle of radius v_bus 00235 float dtc = controller->v_ref/controller->v_bus; 00236 float scale = linearize_dtc(controller, dtc); 00237 //controller->v_d = scale*controller->v_d; 00238 //controller->v_q = scale*controller->v_q; 00239 //float dtc_q = controller->v_q/controller->v_bus; 00240 00241 //linearize_dtc(&dtc_q); 00242 //controller->v_d = dtc_d*controller->v_bus; 00243 //controller->v_q = dtc_q*controller->v_bus; 00244 abc(controller->theta_elec + 0.0f*DT*controller->dtheta_elec, scale*controller->v_d, scale*controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages 00245 controller->current_sector = ((controller->i_a>0)<<2)|((controller->i_b>0)<<1)|(controller->i_c>0); 00246 svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, controller->current_sector, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation 00247 00248 00249 00250 00251 if(PHASE_ORDER){ // Check which phase order to use, 00252 TIM1->CCR3 = (PWM_ARR)*(1.0f-controller->dtc_u); // Write duty cycles 00253 TIM1->CCR2 = (PWM_ARR)*(1.0f-controller->dtc_v); 00254 TIM1->CCR1 = (PWM_ARR)*(1.0f-controller->dtc_w); 00255 } 00256 else{ 00257 TIM1->CCR3 = (PWM_ARR)*(1.0f-controller->dtc_u); 00258 TIM1->CCR1 = (PWM_ARR)*(1.0f-controller->dtc_v); 00259 TIM1->CCR2 = (PWM_ARR)*(1.0f-controller->dtc_w); 00260 } 00261 00262 controller->theta_elec = theta; 00263 00264 } 00265 00266 00267 void torque_control(ControllerStruct *controller){ 00268 float torque_ref = controller->kp*(controller->p_des - controller->theta_mech) + controller->t_ff + controller->kd*(controller->v_des - controller->dtheta_mech); 00269 //float torque_ref = -.1*(controller->p_des - controller->theta_mech); 00270 controller->i_q_ref = torque_ref/KT_OUT; 00271 controller->i_d_ref = 0.0f; 00272 } 00273
Generated on Tue Jul 12 2022 13:05:27 by
1.7.2