Mini Cheetah Actuator Branch Superseded by: https://github.com/bgkatz/motorcontrol

Dependencies:   mbed-dev-f303 FastPWM3

Superseded by: https://github.com/bgkatz/motorcontrol

Revision:
23:2adf23ee0305
Parent:
22:60276ba87ac6
Child:
24:58c2d7571207
--- a/Calibration/calibration.cpp	Fri Mar 31 18:24:46 2017 +0000
+++ b/Calibration/calibration.cpp	Wed Apr 05 20:54:16 2017 +0000
@@ -3,43 +3,51 @@
 /// 
 
 #include "calibration.h"
-
+#include "foc.h"
+#include "PreferenceWriter.h"
+#include "user_config.h"
 
-void order_phases(PositionSensor *ps, GPIOStruct *gpio){   
+void order_phases(PositionSensor *ps, GPIOStruct *gpio, ControllerStruct *controller, PreferenceWriter *prefs){   
     ///Checks phase order, to ensure that positive Q current produces
     ///torque in the positive direction wrt the position sensor.
-    
     printf("\n\r Checking phase ordering\n\r");
     float theta_ref = 0;
     float theta_actual = 0;
-    float v_d = .2;                                         //Put all volts on the D-Axis
+    float v_d = .2;                                                         //Put all volts on the D-Axis
     float v_q = 0.0;
     float v_u, v_v, v_w = 0;
     float dtc_u, dtc_v, dtc_w = .5;
     int sample_counter = 0;
     
     ///Set voltage angle to zero, wait for rotor position to settle
-    abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);             //inverse dq0 transform on voltages
-    svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);        //space vector modulation
+    abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);                             //inverse dq0 transform on voltages
+    svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                        //space vector modulation
     for(int i = 0; i<20000; i++){
-        TIM1->CCR3 = 0x708*(1.0f-dtc_u);                    // Set duty cycles
+        TIM1->CCR3 = 0x708*(1.0f-dtc_u);                                    // Set duty cycles
         TIM1->CCR2 = 0x708*(1.0f-dtc_v);
         TIM1->CCR1 = 0x708*(1.0f-dtc_w);
         wait_us(100);
         }
     //ps->ZeroPosition();
     ps->Sample(); 
-    float theta_start = ps->GetMechPosition();              //get initial rotor position
-    
+    wait_us(1000);
+    float theta_start = ps->GetMechPosition();                              //get initial rotor position
+    controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);    //Calculate phase currents from ADC readings
+    controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
+    controller->i_a = -controller->i_b - controller->i_c;
+    dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q);    //dq0 transform on currents
+    float current = sqrt(pow(controller->i_d, 2) + pow(controller->i_q, 2));
+    printf("\n\rCurrent\n\r");
+    printf("%f    %f   %f\n\r\n\r", controller->i_d, controller->i_q, current);
     /// Rotate voltage angle
-    while(theta_ref < 4*PI){                                //rotate for 2 electrical cycles
-        abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);         //inverse dq0 transform on voltages
-        svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);    //space vector modulation
+    while(theta_ref < 4*PI){                                                //rotate for 2 electrical cycles
+        abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);                         //inverse dq0 transform on voltages
+        svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                    //space vector modulation
         wait_us(100);
-        TIM1->CCR3 = 0x708*(1.0f-dtc_u);                    //Set duty cycles
+        TIM1->CCR3 = 0x708*(1.0f-dtc_u);                                    //Set duty cycles
         TIM1->CCR2 = 0x708*(1.0f-dtc_v);
         TIM1->CCR1 = 0x708*(1.0f-dtc_w);
-       ps->Sample();                                        //sample position sensor
+       ps->Sample();                                                        //sample position sensor
        theta_actual = ps->GetMechPosition();
        if(sample_counter > 200){
            sample_counter = 0 ;
@@ -52,41 +60,39 @@
     int direction = (theta_end - theta_start)>0;
     printf("Theta Start:   %f    Theta End:  %f\n\r", theta_start, theta_end);
     printf("Direction:  %d\n\r", direction);
-    if(direction){printf("Phaseing correct\n\r");}
+    if(direction){printf("Phasing correct\n\r");}
     else if(!direction){printf("Phasing incorrect.  Swapping phases V and W\n\r");}
     gpio->phasing = direction;
-    
+    PHASE_ORDER = direction;
     }
     
     
-    
-void calibrate(PositionSensor *ps, GPIOStruct *gpio){
+void calibrate(PositionSensor *ps, GPIOStruct *gpio, ControllerStruct *controller, PreferenceWriter *prefs){
     /// Measures the electrical angle offset of the position sensor
     /// and (in the future) corrects nonlinearity due to position sensor eccentricity
-    
     printf("Starting calibration procedure\n\r");
     
-    const int n = 128*NPP;                                  // number of positions to be sampled per mechanical rotation.  Multiple of NPP for filtering reasons (see later)
-    const int n2 = 10;                                     // increments between saved samples (for smoothing motion)
-    float delta = 2*PI*NPP/(n*n2);                               // change in angle between samples
-    float error_f[n] = {0};                                 // error vector rotating forwards
-    float error_b[n] = {0};                                 // error vector rotating backwards
+    const int n = 128*NPP;                                                  // number of positions to be sampled per mechanical rotation.  Multiple of NPP for filtering reasons (see later)
+    const int n2 = 10;                                                      // increments between saved samples (for smoothing motion)
+    float delta = 2*PI*NPP/(n*n2);                                          // change in angle between samples
+    float error_f[n] = {0};                                                 // error vector rotating forwards
+    float error_b[n] = {0};                                                 // error vector rotating backwards
     int raw_f[n] = {0};
     int raw_b[n] = {0};
     float theta_ref = 0;
     float theta_actual = 0;
-    float v_d = .2;                                         // Put volts on the D-Axis
+    float v_d = .2;                                                         // Put volts on the D-Axis
     float v_q = 0.0;
     float v_u, v_v, v_w = 0;
     float dtc_u, dtc_v, dtc_w = .5;
     
         
     ///Set voltage angle to zero, wait for rotor position to settle
-    abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);             // inverse dq0 transform on voltages
-    svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);        // space vector modulation
+    abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);                             // inverse dq0 transform on voltages
+    svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                        // space vector modulation
     for(int i = 0; i<40000; i++){
-        TIM1->CCR3 = 0x708*(1.0f-dtc_u);                    // Set duty cycles
-        if(gpio->phasing){
+        TIM1->CCR3 = 0x708*(1.0f-dtc_u);                                    // Set duty cycles
+        if(gpio->phasing){                                   
             TIM1->CCR2 = 0x708*(1.0f-dtc_v);
             TIM1->CCR1 = 0x708*(1.0f-dtc_w);
             }
@@ -97,12 +103,16 @@
         wait_us(100);
         }
     ps->Sample();   
-    
-    for(int i = 0; i<n; i++){                               // rotate forwards
+    controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);    //Calculate phase currents from ADC readings
+    controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
+    controller->i_a = -controller->i_b - controller->i_c;
+    dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q);    //dq0 transform on currents
+    float current = sqrt(pow(controller->i_d, 2) + pow(controller->i_q, 2));
+    for(int i = 0; i<n; i++){                                               // rotate forwards
        for(int j = 0; j<n2; j++){   
         theta_ref += delta;
-       abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);          // inverse dq0 transform on voltages
-       svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);     // space vector modulation
+       abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);                          // inverse dq0 transform on voltages
+       svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                     // space vector modulation
         TIM1->CCR3 = 0x708*(1.0f-dtc_u);
         if(gpio->phasing){
             TIM1->CCR2 = 0x708*(1.0f-dtc_v);
@@ -122,11 +132,12 @@
         printf("%.4f   %.4f    %d\n\r", theta_ref/(NPP), theta_actual, raw_f[i]);
        //theta_ref += delta;
         }
-    for(int i = 0; i<n; i++){                               // rotate backwards
+    printf(" Current Angle : Rotor Angle : Raw Encoder \n\r\n\r");
+    for(int i = 0; i<n; i++){                                               // rotate backwards
        for(int j = 0; j<n2; j++){
        theta_ref -= delta;
-       abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);          // inverse dq0 transform on voltages
-       svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);     // space vector modulation
+       abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w);                          // inverse dq0 transform on voltages
+       svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w);                     // space vector modulation
         TIM1->CCR3 = 0x708*(1.0f-dtc_u);
         if(gpio->phasing){
             TIM1->CCR2 = 0x708*(1.0f-dtc_v);
@@ -139,8 +150,8 @@
             wait_us(100);
             ps->Sample();
         }
-       ps->Sample();                                        // sample position sensor
-       theta_actual = ps->GetMechPosition();                // get mechanical position
+       ps->Sample();                                                        // sample position sensor
+       theta_actual = ps->GetMechPosition();                                // get mechanical position
        error_b[i] = theta_ref/NPP - theta_actual;
        raw_b[i] = ps->GetRawPosition();
        printf("%.4f   %.4f    %d\n\r", theta_ref/(NPP), theta_actual, raw_b[i]);
@@ -149,53 +160,65 @@
         
         float offset = 0;                                  
         for(int i = 0; i<n; i++){
-            offset += (error_f[i] + error_b[n-1-i])/(2.0f*n);   // calclate average position sensor offset
+            offset += (error_f[i] + error_b[n-1-i])/(2.0f*n);               // calclate average position sensor offset
             }
-        offset = fmod(offset*NPP, 2*PI);                    // convert mechanical angle to electrical angle
-        printf("Encoder Electrical Offset (rad) %f\n\r",  offset);
+        offset = fmod(offset*NPP, 2*PI);                                    // convert mechanical angle to electrical angle
+        
             
-        ps->SetElecOffset(offset);                          // Set position sensor offset
+        ps->SetElecOffset(offset);                                          // Set position sensor offset
+        __float_reg[0] = offset;
+        E_OFFSET = offset;
         
         /// Perform filtering to linearize position sensor eccentricity
         /// FIR n-sample average, where n = number of samples in one electrical cycle
         /// This filter has zero gain at electrical frequency and all integer multiples
-        /// So cogging should also be completely filtered out.
+        /// So cogging should be completely filtered out.
         
         float error[n] = {0};
-        int window = 128;
+        const int window = 128;
         float error_filt[n] = {0};
+        float cogging_current[window] = {0};
         float mean = 0;
-        for (int i = 0; i<n; i++){                          //Average the forward and back directions
+        for (int i = 0; i<n; i++){                                          //Average the forward and back directions
             error[i] = 0.5f*(error_f[i] + error_b[n-i-1]);
             }
         for (int i = 0; i<n; i++){
             for(int j = 0; j<window; j++){
-                int ind = -window/2 + j + i;                    // Indexes from -window/2 to + window/2
+                int ind = -window/2 + j + i;                                // Indexes from -window/2 to + window/2
                 if(ind<0){
-                    ind += n;}                        // Moving average wraps around
+                    ind += n;}                                              // Moving average wraps around
                 else if(ind > n-1) {
                     ind -= n;}
                 error_filt[i] += error[ind]/(float)window;
                 }
+            if(i<window){
+                cogging_current[i] = current*sinf((error[i] - error_filt[i])*NPP);
+                }
             //printf("%.4f   %4f    %.4f   %.4f\n\r", error[i], error_filt[i], error_f[i], error_b[i]);
             mean += error_filt[i]/n;
             }
-        int raw_offset = (raw_f[0] + raw_b[n-1])/2;     //Insensitive to errors in this direction, so 2 points is plenty
+        int raw_offset = (raw_f[0] + raw_b[n-1])/2;                         //Insensitive to errors in this direction, so 2 points is plenty
         const int  n_lut = 128;
         int lut[n_lut];
-        for (int i = 0; i<n_lut; i++){                      // build lookup table
+        printf("\n\r Encoder non-linearity compensation table\n\r");
+        printf(" Sample Number : Lookup Index : Lookup Value : Cogging Current Lookup\n\r\n\r");
+        for (int i = 0; i<n_lut; i++){                                      // build lookup table
             int ind = (raw_offset>>7) + i;
             if(ind > (n_lut-1)){ 
                 ind -= n_lut;
                 }
             lut[ind] = (int) ((error_filt[i*NPP] - mean)*(float)(ps->GetCPR())/(2.0f*PI));
-            printf("%d   %d   %d   %d\n\r", raw_offset>>7, i, ind, lut[ind]);
+            printf("%d   %d   %d   %f\n\r", i, ind, lut[ind],  cogging_current[i]);
             }
-            ps->WriteLUT(lut);                                            // write lookup table to position sensor object
-         
+            
+        ps->WriteLUT(lut);                                            // write lookup table to position sensor object
+        //memcpy(controller->cogging, cogging_current, sizeof(controller->cogging));  //compensation doesn't actually work yet....
+        memcpy(&ENCODER_LUT, lut, sizeof(lut));
+        printf("\n\rEncoder Electrical Offset (rad) %f\n\r",  offset);
         
-        
-        
-    
-    
+        if (!prefs->ready()) prefs->open();
+        prefs->flush();
+        //prefs->close();
+
+
     }
\ No newline at end of file