Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed-dev-f303 FastPWM3
Calibration/calibration.cpp
- Committer:
- benkatz
- Date:
- 2017-03-31
- Revision:
- 22:60276ba87ac6
- Child:
- 23:2adf23ee0305
File content as of revision 22:60276ba87ac6:
/// Calibration procedures for determining position sensor offset,
/// phase ordering, and position sensor linearization
///
#include "calibration.h"
void order_phases(PositionSensor *ps, GPIOStruct *gpio){
///Checks phase order, to ensure that positive Q current produces
///torque in the positive direction wrt the position sensor.
printf("\n\r Checking phase ordering\n\r");
float theta_ref = 0;
float theta_actual = 0;
float v_d = .2; //Put all volts on the D-Axis
float v_q = 0.0;
float v_u, v_v, v_w = 0;
float dtc_u, dtc_v, dtc_w = .5;
int sample_counter = 0;
///Set voltage angle to zero, wait for rotor position to settle
abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); //inverse dq0 transform on voltages
svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); //space vector modulation
for(int i = 0; i<20000; i++){
TIM1->CCR3 = 0x708*(1.0f-dtc_u); // Set duty cycles
TIM1->CCR2 = 0x708*(1.0f-dtc_v);
TIM1->CCR1 = 0x708*(1.0f-dtc_w);
wait_us(100);
}
//ps->ZeroPosition();
ps->Sample();
float theta_start = ps->GetMechPosition(); //get initial rotor position
/// Rotate voltage angle
while(theta_ref < 4*PI){ //rotate for 2 electrical cycles
abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); //inverse dq0 transform on voltages
svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); //space vector modulation
wait_us(100);
TIM1->CCR3 = 0x708*(1.0f-dtc_u); //Set duty cycles
TIM1->CCR2 = 0x708*(1.0f-dtc_v);
TIM1->CCR1 = 0x708*(1.0f-dtc_w);
ps->Sample(); //sample position sensor
theta_actual = ps->GetMechPosition();
if(sample_counter > 200){
sample_counter = 0 ;
printf("%.4f %.4f\n\r", theta_ref/(NPP), theta_actual);
}
sample_counter++;
theta_ref += 0.001f;
}
float theta_end = ps->GetMechPosition();
int direction = (theta_end - theta_start)>0;
printf("Theta Start: %f Theta End: %f\n\r", theta_start, theta_end);
printf("Direction: %d\n\r", direction);
if(direction){printf("Phaseing correct\n\r");}
else if(!direction){printf("Phasing incorrect. Swapping phases V and W\n\r");}
gpio->phasing = direction;
}
void calibrate(PositionSensor *ps, GPIOStruct *gpio){
/// Measures the electrical angle offset of the position sensor
/// and (in the future) corrects nonlinearity due to position sensor eccentricity
printf("Starting calibration procedure\n\r");
const int n = 128*NPP; // number of positions to be sampled per mechanical rotation. Multiple of NPP for filtering reasons (see later)
const int n2 = 10; // increments between saved samples (for smoothing motion)
float delta = 2*PI*NPP/(n*n2); // change in angle between samples
float error_f[n] = {0}; // error vector rotating forwards
float error_b[n] = {0}; // error vector rotating backwards
int raw_f[n] = {0};
int raw_b[n] = {0};
float theta_ref = 0;
float theta_actual = 0;
float v_d = .2; // Put volts on the D-Axis
float v_q = 0.0;
float v_u, v_v, v_w = 0;
float dtc_u, dtc_v, dtc_w = .5;
///Set voltage angle to zero, wait for rotor position to settle
abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages
svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation
for(int i = 0; i<40000; i++){
TIM1->CCR3 = 0x708*(1.0f-dtc_u); // Set duty cycles
if(gpio->phasing){
TIM1->CCR2 = 0x708*(1.0f-dtc_v);
TIM1->CCR1 = 0x708*(1.0f-dtc_w);
}
else{
TIM1->CCR1 = 0x708*(1.0f-dtc_v);
TIM1->CCR2 = 0x708*(1.0f-dtc_w);
}
wait_us(100);
}
ps->Sample();
for(int i = 0; i<n; i++){ // rotate forwards
for(int j = 0; j<n2; j++){
theta_ref += delta;
abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages
svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation
TIM1->CCR3 = 0x708*(1.0f-dtc_u);
if(gpio->phasing){
TIM1->CCR2 = 0x708*(1.0f-dtc_v);
TIM1->CCR1 = 0x708*(1.0f-dtc_w);
}
else{
TIM1->CCR1 = 0x708*(1.0f-dtc_v);
TIM1->CCR2 = 0x708*(1.0f-dtc_w);
}
wait_us(100);
ps->Sample();
}
ps->Sample();
theta_actual = ps->GetMechPosition();
error_f[i] = theta_ref/NPP - theta_actual;
raw_f[i] = ps->GetRawPosition();
printf("%.4f %.4f %d\n\r", theta_ref/(NPP), theta_actual, raw_f[i]);
//theta_ref += delta;
}
for(int i = 0; i<n; i++){ // rotate backwards
for(int j = 0; j<n2; j++){
theta_ref -= delta;
abc(theta_ref, v_d, v_q, &v_u, &v_v, &v_w); // inverse dq0 transform on voltages
svm(1.0, v_u, v_v, v_w, &dtc_u, &dtc_v, &dtc_w); // space vector modulation
TIM1->CCR3 = 0x708*(1.0f-dtc_u);
if(gpio->phasing){
TIM1->CCR2 = 0x708*(1.0f-dtc_v);
TIM1->CCR1 = 0x708*(1.0f-dtc_w);
}
else{
TIM1->CCR1 = 0x708*(1.0f-dtc_v);
TIM1->CCR2 = 0x708*(1.0f-dtc_w);
}
wait_us(100);
ps->Sample();
}
ps->Sample(); // sample position sensor
theta_actual = ps->GetMechPosition(); // get mechanical position
error_b[i] = theta_ref/NPP - theta_actual;
raw_b[i] = ps->GetRawPosition();
printf("%.4f %.4f %d\n\r", theta_ref/(NPP), theta_actual, raw_b[i]);
//theta_ref -= delta;
}
float offset = 0;
for(int i = 0; i<n; i++){
offset += (error_f[i] + error_b[n-1-i])/(2.0f*n); // calclate average position sensor offset
}
offset = fmod(offset*NPP, 2*PI); // convert mechanical angle to electrical angle
printf("Encoder Electrical Offset (rad) %f\n\r", offset);
ps->SetElecOffset(offset); // Set position sensor offset
/// Perform filtering to linearize position sensor eccentricity
/// FIR n-sample average, where n = number of samples in one electrical cycle
/// This filter has zero gain at electrical frequency and all integer multiples
/// So cogging should also be completely filtered out.
float error[n] = {0};
int window = 128;
float error_filt[n] = {0};
float mean = 0;
for (int i = 0; i<n; i++){ //Average the forward and back directions
error[i] = 0.5f*(error_f[i] + error_b[n-i-1]);
}
for (int i = 0; i<n; i++){
for(int j = 0; j<window; j++){
int ind = -window/2 + j + i; // Indexes from -window/2 to + window/2
if(ind<0){
ind += n;} // Moving average wraps around
else if(ind > n-1) {
ind -= n;}
error_filt[i] += error[ind]/(float)window;
}
//printf("%.4f %4f %.4f %.4f\n\r", error[i], error_filt[i], error_f[i], error_b[i]);
mean += error_filt[i]/n;
}
int raw_offset = (raw_f[0] + raw_b[n-1])/2; //Insensitive to errors in this direction, so 2 points is plenty
const int n_lut = 128;
int lut[n_lut];
for (int i = 0; i<n_lut; i++){ // build lookup table
int ind = (raw_offset>>7) + i;
if(ind > (n_lut-1)){
ind -= n_lut;
}
lut[ind] = (int) ((error_filt[i*NPP] - mean)*(float)(ps->GetCPR())/(2.0f*PI));
printf("%d %d %d %d\n\r", raw_offset>>7, i, ind, lut[ind]);
}
ps->WriteLUT(lut); // write lookup table to position sensor object
}