
Impedance Fast Circuitry Software
Fork of DSP_200kHz by
main.cpp
- Committer:
- baxterja
- Date:
- 2018-06-22
- Revision:
- 86:b3520f4453cf
- Parent:
- 85:f1be018aacac
- Child:
- 87:80c9169acb85
File content as of revision 86:b3520f4453cf:
#include "mbed.h" // Sampling #include "DMA_sampling/adc.h" #include "DMA_sampling/dac.h" #include "DMA_sampling/pdb.h" #include "Jareds_DSP/filters_jared.h" #include "Jareds_DSP/demodulate.h" // DSP #include "dsp.h" #include "print_data.h" #define PROBE_NUMBER 5 #if PROBE_NUMBER == 1 #define PRE_COMPUTE_LENGTH 232 #elif PROBE_NUMBER == 2 #define PRE_COMPUTE_LENGTH 528 #elif PROBE_NUMBER == 3 #define PRE_COMPUTE_LENGTH 176 #elif PROBE_NUMBER == 4 #define PRE_COMPUTE_LENGTH 320 #elif PROBE_NUMBER == 5 #define PRE_COMPUTE_LENGTH 208 #elif PROBE_NUMBER == 6 #define PRE_COMPUTE_LENGTH 528 #endif //#define probe_number 1 //Probe number const int probe_number = PROBE_NUMBER; //const int PCL_LUT[] = {232,528,176,320,208}; //Pre-compute-length for the different probe numbers //190Hz 528 //312Hz 320 //431Hz 232 //481Hz 208 //568Hz 176 #define PRINT_BUFFER_LENGTH 10000 #define GATHER_STATISTICS 1 Serial pc(USBTX, USBRX); // for debug purposes DigitalOut led_red(LED_RED); DigitalOut led_green(LED_GREEN); DigitalOut led_blue(LED_BLUE); DigitalOut status_0(D0); DigitalOut status_1(D1); DigitalOut status_3(D3); DigitalOut Start_sync(D4);// Currently not being used. DigitalIn sw2(SW2);//Button 2 Currently not being used DigitalIn sw3(SW3);//Button 3 Currently not being used Timer timer; // defined in dma.cpp extern int len; extern uint16_t static_input_array0[];//ADC 0(swaps between a0 and a1. Used to measure current) extern uint16_t static_input_array1[];//ADC 1(measures the voltage between the probe and ground) extern uint16_t static_output_array0[];//DAC outputs whatever wave form we want. extern uint16_t sampling_status;//used to determine when adc's are done reading. //#define INPUT_ARRAY_SIZE 32 //#define DECIMATION_FACTOR 8 //#define DEMODULATED_SIGNAL_LENGTH 64 float *input_50k[8]; //190Hz 528 //312Hz 320 //431Hz 232 //481Hz 208 //568Hz 176 //#define pre_compute_length 208 //#define CarrierFrequency (100000/pre_compute_length) const int pre_compute_length = PRE_COMPUTE_LENGTH; const float CarrierFrequency = (100000/pre_compute_length); #define SAMPLEFREQUENCY 100000 uint16_t out_val_pre[pre_compute_length]; //used to write values to the dac float twopi = 3.14159265359 * 2; void pre_compute_tables() { // This function will precompute the cos and sin tables used in the rest of the program for(int precompute_counter = 0; precompute_counter < pre_compute_length; precompute_counter++){ out_val_pre[precompute_counter] = (int) ((cos(twopi * CarrierFrequency /SAMPLEFREQUENCY * precompute_counter)) * 2046.0 + 2048.0);//12 bit cos wave } } int main() { led_blue = 1; led_green = 1; led_red = 1; pre_compute_tables(); precompute_tables(); //turn off all LEDs //slight change. pc.baud(230400); /* //pc.printf("High: %x Mid: %x Low: %x",SIM->UIDH,SIM->UIDML,SIM->UIDL); if(SIM->UIDH == 0x2effff && SIM->UIDML == 0x4e453154 && SIM->UIDL == 0x1004001e) probe_number = 6; else if(SIM->UIDH == 0x1cffff && SIM->UIDML == 0x4e453215 && SIM->UIDL == 0x700b0003) probe_number = 2; else if(SIM->UIDH == 0x2effff && SIM->UIDML == 0x4e453215 && SIM->UIDL == 0x700b0021) probe_number = 3; else if(SIM->UIDH == 0x14ffff && SIM->UIDML == 0x4e453154 && SIM->UIDL == 0x5009002b) probe_number = 4; else if(SIM->UIDH == 0x12ffff && SIM->UIDML == 0x4e453103 && SIM->UIDL == 0x60010030) probe_number = 1; else if(SIM->UIDH == 0x10ffff && SIM->UIDML == 0x4e453105 && SIM->UIDL == 0x100b0031) probe_number = 5; else if(SIM->UIDH == 0x19ffff && SIM->UIDML == 0x4d441504 && SIM->UIDL == 0x90110031) probe_number = 7;//this FRDM board had a bad usb connection else { pc.printf("FRDM BOARD NOT RECOGNIZED. Here is the new ID:\n\r"); pc.printf("High: %x Mid: %x Low: %x\n\r",SIM->UIDH,SIM->UIDML,SIM->UIDL); probe_number = 6; } */ pc.printf("PROBE #%d",probe_number); wait(1.0f); int DAC_COUNTER = 0; //Filters used in program. Coefficients generated using matlab FDA tool //Fs = 100000, FPass = 1500, FStop = 4500, -40db float Coeffs_100k[64] = {0.00368762746013400, -0.00390835182721185, -0.00352466159836192, -0.00378044968164769, -0.00434746630849834, -0.00502920744118478, -0.00570543677799210, -0.00628464650365093, -0.00668691824262464, -0.00683917139561193, -0.00667505410229485, -0.00613341508706847, -0.00516232410283893, -0.00371868951723358, -0.00177417571286934, 0.000685809876396031, 0.00365648516386919, 0.00711658039739992, 0.0110234409358280, 0.0153179248880130, 0.0199204447074274, 0.0247385052308702, 0.0296636617979935, 0.0345813441342327, 0.0393672306749833, 0.0438989152744108, 0.0480511039644129, 0.0517108728403463, 0.0547710075854812, 0.0571509837193129, 0.0587848911618005, 0.0596038010741317, 0.0596038010741317, 0.0587848911618005, 0.0571509837193129, 0.0547710075854812, 0.0517108728403463, 0.0480511039644129, 0.0438989152744108, 0.0393672306749833, 0.0345813441342327, 0.0296636617979935, 0.0247385052308702, 0.0199204447074274, 0.0153179248880130, 0.0110234409358280, 0.00711658039739992, 0.00365648516386919, 0.000685809876396031, -0.00177417571286934, -0.00371868951723358, -0.00516232410283893, -0.00613341508706847, -0.00667505410229485, -0.00683917139561193, -0.00668691824262464, -0.00628464650365093, -0.00570543677799210, -0.00502920744118478, -0.00434746630849834, -0.00378044968164769, -0.00352466159836192, -0.00390835182721185, 0.00368762746013400}; //FS = 12500, Fpass = 100 Fstop 595 -50 db, picks on 1KHz signal float Coeffs_12500[64] = {-0.00222124676855946, -0.00163176345559825, -0.00214372257722720, -0.00268653504526241, -0.00323192624665395, -0.00374368158669702, -0.00417907979321931, -0.00449328006488225, -0.00463658803501384, -0.00455550760053878, -0.00419848205106894, -0.00352024663122325, -0.00247317556122392, -0.00102679426345247, 0.000845020041268567, 0.00315252023354445, 0.00589238992243332, 0.00904676286706929, 0.0125796442526745, 0.0164391331165775, 0.0205582919104753, 0.0248562683452381, 0.0292399202971496, 0.0336089813533200, 0.0378556202824368, 0.0418719268554270, 0.0455508704073759, 0.0487915537931733, 0.0515035460002020, 0.0536094934833149, 0.0550483048257919, 0.0557785148825623, 0.0557785148825623, 0.0550483048257919, 0.0536094934833149, 0.0515035460002020, 0.0487915537931733, 0.0455508704073759, 0.0418719268554270, 0.0378556202824368, 0.0336089813533200, 0.0292399202971496, 0.0248562683452381, 0.0205582919104753, 0.0164391331165775, 0.0125796442526745, 0.00904676286706929, 0.00589238992243332, 0.00315252023354445, 0.000845020041268567, -0.00102679426345247, -0.00247317556122392, -0.00352024663122325, -0.00419848205106894, -0.00455550760053878, -0.00463658803501384, -0.00449328006488225, -0.00417907979321931, -0.00374368158669702, -0.00323192624665395, -0.00268653504526241, -0.00214372257722720, -0.00163176345559825, -0.00222124676855946}; //Fs = 1562.5 Fpass = 100, FStop = 195.6, null at 200 Hz float Coeffs_1563[32] = {-0.00296990567211633, 0.00784631357544163, 0.00955642274001412, 0.0105078670942049, 0.00746432577935901, -0.000715888274492355, -0.0127656342089486, -0.0248578255670040, -0.0313597093257934, -0.0264804428976321, -0.00639056527392095, 0.0289495639622991, 0.0749846381319702, 0.123239880157668, 0.163403327438059, 0.186215627611441, 0.186215627611441, 0.163403327438059, 0.123239880157668, 0.0749846381319702, 0.0289495639622991, -0.00639056527392095, -0.0264804428976321, -0.0313597093257934, -0.0248578255670040, -0.0127656342089486, -0.000715888274492355, 0.00746432577935901, 0.0105078670942049, 0.00955642274001412, 0.00784631357544163, -0.00296990567211633}; //Fs = 781.25, Fpass = 60, Fstop = 120, -50 Db float Coeffs_782[32] = {-0.00423132648651131, -0.00413085595827858, -0.00212955364173648, 0.00345345707266939, 0.0105870277845968, 0.0147191914630408, 0.0108878516242339, -0.00283458314983071, -0.0224398052018669, -0.0377493805765767, -0.0358474685211045, -0.00721456868509791, 0.0483564412276129, 0.119338204671425, 0.185468453617916, 0.225354002914126, 0.225354002914126, 0.185468453617916, 0.119338204671425, 0.0483564412276129, -0.00721456868509791, -0.0358474685211045, -0.0377493805765767, -0.0224398052018669, -0.00283458314983071, 0.0108878516242339, 0.0147191914630408, 0.0105870277845968, 0.00345345707266939, -0.00212955364173648, -0.00413085595827858, -0.00423132648651131}; float Coeffs[20] = {0.0328368433284673, 0.0237706090075265, 0.0309894695180997, 0.0385253568846695, 0.0459996974310349, 0.0530165318016261, 0.0591943866845610, 0.0641755708098907, 0.0676960677594849, 0.0694621149975389, 0.0694621149975389, 0.0676960677594849, 0.0641755708098907, 0.0591943866845610, 0.0530165318016261, 0.0459996974310349, 0.0385253568846695, 0.0309894695180997, 0.0237706090075265, 0.0328368433284673}; float Coeffs2[20] = {-0.00506451294187997, -0.00824932319607346, -0.00986370066237912, -0.00518913235010027, 0.00950858650162284, 0.0357083149022659, 0.0711557142019980, 0.109659494661247, 0.142586101123340, 0.161603335553589, 0.161603335553589, 0.142586101123340, 0.109659494661247, 0.0711557142019980, 0.0357083149022659, 0.00950858650162284, -0.00518913235010027, -0.00986370066237912, -0.00824932319607346, -0.00506451294187997}; //note I allocate space for 4 adc inputs, but usually I only use 2 for(int i = 0; i < 8; i++) input_50k[i] = new float[64];//each array represents the input of the adcs //filters(const int num_filters, const int DECIMATION, filters * f, const int block_size, const int numTaps, float coeffs[], int demodulate_after) //num filters: usually 4. In-phase and quadrature phase for both voltage and current //DECIMATION: Decimation Factor //f: the filter after current filter. //block_size: block size of each filter command should be an integer multiple of DECIMATION //Flag noting rather or not to demodulate, and if so what frequency to demodulate at filters f4 = filters(4, 8, NULL, 8, 32, Coeffs_782,DEMOD_No_Demod); filters f3 = filters(4, 2, &f4, 4, 32, Coeffs_1563,DEMOD_No_Demod); filters f2 = filters(4, 8, &f3, 8, 64, Coeffs_12500,DEMOD_No_Demod); filters f1 = filters(2, 8, &f2, 64, 64, Coeffs_100k,DEMOD_200HZ); /* filters f4_b = filters(4, 8, NULL, 8, 32, Coeffs_782,DEMOD_No_Demod); filters f3_b = filters(4, 2, &f4_b, 4, 32, Coeffs_1563,DEMOD_No_Demod); filters f2_b = filters(4, 8, &f3_b, 8, 64, Coeffs_12500,DEMOD_No_Demod); filters f1_b = filters(2, 8, &f2_b, 64, 64, Coeffs_100k,DEMOD_1000HZ); */ //filters f_pre = filters(2, 2, &f1, 64, 64, Coeffs_50k,false); //float output_print_buffer[PRINT_BUFFER_LENGTH];//used to store the adc0 values(current measurment) //float output_print_buffer2[PRINT_BUFFER_LENGTH];//used to store the adc0 values(voltage measurment) int print_buffer_count = 0; pdb_init(); // Initalize PDB dac_init(); // initializes DAC adc_init(); // always initialize adc before dma pc.printf("ADC Initialized\r\n"); dma_init2(); // initializes DMAs dma_reset(); // This clears any DMA triggers that may have gotten things into a different state pc.printf("Buffer Size: %i\r\n", len); led_green = 1; pc.printf("High: %x Mid: %x Low: %x",SIM->UIDH,SIM->UIDML,SIM->UIDL); pc.printf("\r\n\r\n\r\n"); pdb_start(); bool is_actively_printing = false; char read_in_character = 'a'; //while(print_buffer_count<PRINT_BUFFER_LENGTH) timer.start(); while(!GATHER_STATISTICS||print_buffer_count<PRINT_BUFFER_LENGTH) { if(pc.readable())//if the python code has sent any characters recently { while(pc.readable())//if there is a Keyboard input { if (read_in_character == 'R')//start printing { timer.reset(); //timer.start(); is_actively_printing = true; } else if (read_in_character == 'S')//Stop printing { //timer.stop(); is_actively_printing = false; } else if (read_in_character == 'P')//return probe number pc.printf("p%d",probe_number); else if (read_in_character == 'I')//return probe number pc.printf("IMPEDANCE"); } } while(sampling_status == 0)//wait until the ADCs read a new values { status_0 = 1; //used for debugging allows to see utilization print_filter_data(&pc,is_actively_printing);//while waiting for new samples print as much data as possible //Thread::wait(.0001); } sampling_status = 0;//sets sampling status to 0. DMA sets it to one once ADCs sample status_0 = 0;//Tied to D0. use an O-scope to measure how much free time there is to play with. status_1 = 1;//Tied to D1. use an O-scope to measure how much time the processing takes for(int i = 0; i < len; i++) { static_output_array0[i] = out_val_pre[DAC_COUNTER];//DAC output DAC_COUNTER++;//Counter to kepp track of where we are in our precomputed table if (DAC_COUNTER>=pre_compute_length) {DAC_COUNTER = 0;}//wrap around the counter //static_output_array0[i+1] = out_val_pre[DAC_COUNTER];//DAC output //DAC_COUNTER++;//Counter to kepp track of where we are in our precomputed table //if (DAC_COUNTER>=pre_compute_length) {DAC_COUNTER = 0;}//wrap around the counter //Note currently we are sampling 2 adc at 100 KHz. If desired you can also sample 4 ADCs at 50 KHz input_50k[1][i]=float(static_input_array1[i]); // input_50k[3][i/2]=static_input_array1[i+1]; input_50k[0][i]=float(static_input_array0[i]); //input_50k[2][i/2]=static_input_array0[i+1]; }//End of for loop going throught the buffer of adc samples f1.input(input_50k,64,DEMOD_200HZ); //f1_b.input(input_50k,64,DEMOD_1000HZ); //status_3 = 1; //pc.printf("Y"); //status_3 = 0; status_1 = 0;//turn off D1 used in deterimining how long processing is taking }//end of while loop //prints ADC buffer if desired //for(int i = 0; i<PRINT_BUFFER_LENGTH; i++)//print all the adc values measured //{ // printf("%.1f %.1f\n\r",output_print_buffer[i],output_print_buffer2[i]); //} }