
Impedance Fast Circuitry Software
Fork of DSP_200kHz by
main.cpp
- Committer:
- timmey9
- Date:
- 2015-01-30
- Revision:
- 44:41c262caf898
- Parent:
- 43:c593a8b9688f
- Child:
- 45:d591d138cdeb
File content as of revision 44:41c262caf898:
// Server code #include "mbed.h" #include <stdio.h> // Analog sampling #include "PeripheralNames.h" #include "PeripheralPins.h" #include "fsl_adc_hal.h" #include "fsl_clock_manager.h" #include "fsl_dspi_hal.h" #include "AngleEncoder.h" #include "adc.h" #include "dma.h" #include "pit.h" // Analog sampling #define MAX_FADC 6000000 #define SAMPLING_RATE 10 // In microseconds, so 10 us will be a sampling rate of 100 kHz #define TOTAL_SAMPLES 100 // originally 30000 for 0.3 ms of sampling. // for debug purposes Serial pc(USBTX, USBRX); DigitalOut led_red(LED_RED); DigitalOut led_green(LED_GREEN); DigitalOut led_blue(LED_BLUE); DigitalOut test1(PTB19); DigitalOut test2(PTB18); AngleEncoder angle_encoder(PTD2, PTD3, PTD1, PTD0, 8, 0, 1000000); // mosi, miso, sclk, cs, bit_width, mode, hz DigitalIn AMT20_A(PTC0); // input for quadrature encoding from angle encoder DigitalIn AMT20_B(PTC1); // input for quadrature encoding from angle encoder // Analog sampling Ticker Sampler; uint16_t sample_array1[TOTAL_SAMPLES]; uint16_t sample_array2[TOTAL_SAMPLES]; uint16_t angle_array[TOTAL_SAMPLES]; float currA0 = 0; float currA2 = 0; // Declaration of functions void timed_sampling(); // Important globabl variables necessary for the sampling every interval int rotary_count = 0; uint32_t last_AMT20_AB_read = 0; DMA dma(sample_array1, sample_array2, angle_array, TOTAL_SAMPLES, &rotary_count); using namespace std; int main() { led_blue = 1; led_green = 1; led_red = 1; pc.baud(230400); pc.printf("Starting\r\n"); dma.reset(); adc_init(A1); adc_init(A2); pit_init(pc); pc.printf("\r\n\r\n\r\n"); while(1) { rotary_count++; if(rotary_count & 0x01) AMT20_A.mode(PullUp); else AMT20_A.mode(PullDown); if((rotary_count>>1) & 0x01) AMT20_B.mode(PullUp); else AMT20_B.mode(PullDown); if(pc.readable() > 0) { char temp = pc.getc(); switch(temp) { case 'a': //adc_start(); //adc_stop(); // then proceed to 's' to display the array case 's': for(int i = 0; i < TOTAL_SAMPLES; i++) pc.printf("%i: %f\t %f\t %i%i\r\n",i,sample_array1[i]*3.3/65535,sample_array2[i]*3.3/65535, (angle_array[i]>>1)&0x01, angle_array[i]&0x01); pc.printf("\r\n"); break; case 'f': for(int i = 0; i < TOTAL_SAMPLES; i++) {sample_array1[i] = 0; sample_array2[i] = 0; angle_array[i] = 0;} pc.printf("Arrays cleared\r\n"); break; case 'r': pc.printf("Quadrature: %i%i \r\n", (HW_GPIO_PDIR_RD(HW_PORTC)>>1)&0x01, HW_GPIO_PDIR_RD(HW_PORTC)&0x01); } } } } void timed_sampling() { // The following updates the rotary counter for the AMT20 sensor // Put A on PTC0 // Put B on PTC1 uint32_t AMT20_AB = HW_GPIO_PDIR_RD(HW_PORTC) & 0x03; if (AMT20_AB != last_AMT20_AB_read) { // change "INVERT_ANGLE" to change whether relative angle counts up or down. if ((AMT20_AB >> 1)^(last_AMT20_AB_read) & 1U) #if INVERT_ANGLE == 1 {rotary_count--;} else {rotary_count++;} #else {rotary_count++;} else {rotary_count--;} #endif last_AMT20_AB_read = AMT20_AB; } }