Simple PID Controller with Integral Windup Supports creating a diagnostics message to send to a GUI
Fork of PidController by
Diff: PidController.cpp
- Revision:
- 5:1206105e20bd
- Parent:
- 4:b590bd8fec6f
diff -r b590bd8fec6f -r 1206105e20bd PidController.cpp --- a/PidController.cpp Wed Oct 04 01:13:49 2017 +0000 +++ b/PidController.cpp Tue Oct 31 03:46:43 2017 +0000 @@ -1,13 +1,13 @@ #include "mbed.h" #include "PidController.h" -PidController::PidController(bool sqrt){ +PidController::PidController(char c){ elapsedTime =0; mode = MANUAL; - squareRootOuptut = sqrt; + diagChar = c; } -int PidController::Calculate(float SP, float PV, float ManualMV) +float PidController::Calculate(float SP, float PV, float ManualMV) { float CV; //(mm/s) Control Variable float IntegralAction; // Integral Contribution to Output @@ -17,35 +17,37 @@ { CV = ManualMV; //Write Manual Manipulated Variable accumError = 0; + prevError = 0; } else { //Calc error error = SP - PV; IntegralAction = K_i*(accumError + error); - DerivativeAction = K_d*(PV - lastInput); + //DerivativeAction = K_d*(PV - lastInput); + DerivativeAction = K_d*(error - prevError); //-- PID Calculation - if (SP) { - CV = K_p*error + IntegralAction - DerivativeAction; - if ((CV > 0) && squareRootOuptut)CV = sqrt(CV); - } + if (SP) + { + CV = bias + K_p*error + IntegralAction + DerivativeAction; + if (CV>0) {CV = sqrt(CV);} + } else + { + CV= 0; + accumError = 0; + } - CV= 0; - - //-- Only allow the Controller to integrate if the output isnt saturated if ((CV < maxLimit) || (CV > minLimit)) { accumError += error; } - - //-- Told to stop! - if (!SP) accumError = 0; //-- Save Current Input for Next Loop - lastInput = PV; + //lastInput = PV; + prevError = error; //Check to See Output is Within Limits if (CV > maxLimit){CV= maxLimit;} @@ -56,38 +58,41 @@ //-- Make message to send to GUI if (collectDiagnostics){BuildDiagMessage(SP,PV, CV, K_p*error, IntegralAction, DerivativeAction);} - return (int)(CV); + return CV; } -void PidController::UpdateSettings(float Bias, float PropGain, float IntGain, float DiffGain, float OutputMin, float OutputMax, float OutputScale){ +void PidController::UpdateSettings(float Bias, float PropGain, float IntGain, float DiffGain, float OutputMin, float OutputMax){ bias = Bias; K_p = PropGain; K_i = IntGain; K_d = DiffGain; minLimit = OutputMin; maxLimit = OutputMax; - scalar = OutputScale; + return; } void PidController::UpdateSettings(float OutputMin, float OutputMax){ minLimit = OutputMin; maxLimit = OutputMax; + return; } void PidController::StartDiag(void){ elapsedTime =0; collectDiagnostics = true; + return; } void PidController::EndDiag(void){ collectDiagnostics = false; - + return; } void PidController::BuildDiagMessage(float SetPoint, float ProcessVar, float PWM, float PropAction, float IntAction, float DifAction){ - sprintf(diagMsg, "P %d %0.4f %0.4f %0.1f %0.4f %0.4f %0.4f\n", elapsedTime, SetPoint, ProcessVar, PWM, PropAction, IntAction, DifAction); + //sprintf(diagMsg, "%c %d %0.4f %0.4f %0.1f %0.4f %0.4f %0.4f\n", diagChar, elapsedTime, SetPoint, ProcessVar, PWM, PropAction, IntAction, DifAction); + sprintf(diagMsg, "%c %d %0.4f %0.4f %0.1f 0.0 0.0 0.0\n", diagChar, elapsedTime, SetPoint, ProcessVar, PWM); elapsedTime += RATE; - if (elapsedTime > 32000){sprintf(diagMsg, "R");} + return; }