Added EPS faults
Dependencies: FreescaleIAP mbed-rtos mbed
Fork of QM_BAE_review_1 by
BCN.cpp
- Committer:
- Bragadeesh153
- Date:
- 2016-04-13
- Revision:
- 13:fb7facaf308b
- Parent:
- 12:af1d7e18b868
- Child:
- 14:a9588f443f1a
File content as of revision 13:fb7facaf308b:
#include "BCN.h" #include <stdio.h> #include "pin_config.h" //Check the pin names //Takes max 4.3 sec in void FCTN_BCN_TX_MAIN() (temp.calc. + long_beacon + short_beacon) Serial pc_bcn(USBTX, USBRX); //tx,rx SPI spi(PIN16, PIN17, PIN15); // mosi, miso, sclk DigitalOut cs(PIN6); //slave select or chip select Timer t_i; Timeout rf_sl_timeout; Ticker loop; //GLOBAL VARIABLES uint8_t BCN_INIT_STATUS = 0; uint8_t BCN_TX_MAIN_STATUS = 0; uint8_t BCN_TX_STATUS = 0; uint8_t BCN_TX_EN = 1; //hardcoding for now //check where is this variable toggled?? uint8_t BCN_FEN = 0; //hardcoding for now //write this value to flash uint8_t BCN_STANDBY = 0; //hardcoding for now //check where is this variable toggled?? uint8_t BCN_TS_BUFFER = 0; // For Temperature uint8_t BCN_FAIL_COUNT=0; void FCTN_BCN_INIT() { pc_bcn.printf("FCTN_BCN_INIT\n"); BCN_INIT_STATUS = 1; if(BCN_FEN == 0) rf_sl_timeout.attach(&FCTN_BCN_FEN, 30); Init_BEACON_HW(); BCN_INIT_STATUS = 0; } void FCTN_BCN_FEN() { pc_bcn.printf("FCTN_FEN\n"); BCN_FEN = 1;//write this value to flash } void FCTN_BCN_TX_MAIN() { pc_bcn.printf("FCTN_BCN_TX_MAIN\n"); t_i.start(); int begin = t_i.read_us(); BCN_TX_MAIN_STATUS = 1; if(BCN_FEN == 1) { if(BCN_TX_EN == 1) { //Measure and store BCN temperature in BCN_TS_BUFFER BCN_TS_BUFFER = check_Temperature(); pc_bcn.printf("\n\ntemperature = %d\n\n",BCN_TS_BUFFER); //Get BCN_HK data from BCN HW(SPI) //Store BCN_HK data in BCN_HK_BUFFER if(BCN_STANDBY == 1 ) { Set_BCN_TX_STATUS(BCN_TX_STANDBY); BCN_TX_MAIN_STATUS = 0; // break; } else { //transmit short beacon and long beacon //SHORT_BCN_TX(); LONG_BCN_TX(); if(Check_ACK_RECEIVED() == 1) { Set_BCN_TX_STATUS(BCN_TX_SUCCESS); BCN_TX_MAIN_STATUS = 0; } else { Set_BCN_TX_STATUS(BCN_TX_FAILURE); BCN_TX_MAIN_STATUS = 0; BCN_FAIL_COUNT+=1; } } } else { Set_BCN_TX_STATUS(BCN_TX_DISABLED); BCN_TX_MAIN_STATUS = 0; } } else { Set_BCN_TX_STATUS(BCN_RF_SILENCE); //Window of RF Silence: None of the Txs should be on. BCN_TX_MAIN_STATUS = 0; } t_i.stop(); int end = t_i.read_us(); pc_bcn.printf("The time required for FCTN_BCN_TX_MAIN is %d useconds\r\n", end-begin); } void Set_BCN_TX_STATUS(uint8_t STATUS) { BCN_TX_STATUS = STATUS; } uint8_t check_Temperature() { uint8_t temperature; writereg(RF22_REG_0F_ADC_CONFIGURATION,0x00); writereg(RF22_REG_12_Temperature_Sensor_Calibration,0x20); writereg(RF22_REG_0F_ADC_CONFIGURATION,0x80); wait(0.1); temperature = readreg(RF22_REG_11_ADC_Value); temperature = (float)temperature*0.5 - 64; return temperature; } void SHORT_BCN_TX() { writereg(RF22_REG_6E_TX_DATA_RATE,0x01); writereg(RF22_REG_6F_TX_DATA_RATE,0x50);//160bps writereg(RF22_REG_3E_PACKET_LENGTH,SHORT_TX_DATA); //short packet length wait(0.02); uint32_t timeout_count = 10e5; //extract values from short_beacon[] struct Short_beacon { uint8_t Voltage[1]; uint8_t AngularSpeed[2]; uint8_t SubsystemStatus[1]; uint8_t Temp[3]; uint8_t ErrorFlag[1]; }Shortbeacon = { {0x88}, {0x99, 0xAA} , {0xAA},{0xAA,0xDD,0xEE}, {0x00} }; //filling hk data //uint8_t short_beacon[] = { 0xAB, 0x8A, 0xE2, 0xBB, 0xB8, 0xA2, 0x8E,Shortbeacon.Voltage[0],Shortbeacon.AngularSpeed[0], Shortbeacon.AngularSpeed[1],Shortbeacon.SubsystemStatus[0],Shortbeacon.Temp[0],Shortbeacon.Temp[1],Shortbeacon.Temp[2],Shortbeacon.ErrorFlag[0]}; uint8_t short_beacon[] = { 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,Shortbeacon.Voltage[0],Shortbeacon.AngularSpeed[0], Shortbeacon.AngularSpeed[1],Shortbeacon.SubsystemStatus[0],Shortbeacon.Temp[0],Shortbeacon.Temp[1],Shortbeacon.Temp[2],Shortbeacon.ErrorFlag[0]}; clearTxBuf(); //writing data first time int byte = 0; cs = 0; spi.write(0xFF); for (int byte_counter = 0; byte_counter <15 ; byte_counter++) { for(int j = 3; j >= 0 ; j--) { if((short_beacon[byte_counter] & (uint8_t) pow(2.0,(j*2+1)))!= pow(2.0,(j*2+1))) { byte=0x00; } else { byte=0xF0; } if((short_beacon[byte_counter] & (uint8_t) pow(2.0,j*2))!= pow(2.0,j*2)) { byte=byte | 0x00; } else { byte=byte | 0x0F; } spi.write(byte); } } cs = 1; //Set to Tx mode writereg(RF22_REG_07_OPERATING_MODE1,0x08);//* wait(0.1); //Check for fifoThresh while(timeout_count--)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x20) == 0x20)break; timeout_count=10e5; //Check for packet_sent while(timeout_count--)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x04) == 0x04)break; //pc_bcn.printf("Short packet sent\r\n"); writereg(RF22_REG_07_OPERATING_MODE1,0x00); //standby mode } void LONG_BCN_TX() { writereg(RF22_REG_6E_TX_DATA_RATE,0x08); writereg(RF22_REG_6F_TX_DATA_RATE,0x31);//1000 bps writereg(RF22_REG_3E_PACKET_LENGTH,LONG_TX_DATA); //long packet length wait(0.02); uint32_t timeout_count=10e5; //get long_beacon array uint8_t Long_beacon[125]; for(int i = 0;i<125;) { Long_beacon[i++] = 0xAA; } //setModeIdle(); clearTxBuf(); //writing data first time cs = 0; spi.write(0xFF); for(int i=0; i<60;i++) { spi.write(Long_beacon[i]); } cs = 1; //Set to Tx mode writereg(RF22_REG_07_OPERATING_MODE1,0x08);//* wait(0.1); //Check for fifoThresh while(timeout_count--)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x20) == 0x20)break; timeout_count=10e5; cs = 0; spi.write(0xFF); for(int i=60; i<125;i++) { spi.write(Long_beacon[i]); } cs = 1; wait(0.1); //Check for fifoThresh while(timeout_count--)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x20) == 0x20)break; timeout_count=10e5; //Check for packetsent interrupt while(timeout_count--)if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x04) == 0x04)break; //pc_bcn.printf("Long packet sent\r\n"); writereg(RF22_REG_07_OPERATING_MODE1,0x00); //standby mode } void reset_rfm() { FCTN_BCN_INIT(); } void writereg(uint8_t reg,uint8_t val) { uint8_t count = 0; for(;;count++) { int read_val =0; cs = 0;spi.write(reg | 0x80);spi.write(val);cs = 1; if(reg != 0x7 && reg != 0x58 && reg != 0xF) { read_val = readreg(reg); if (read_val == val) { break; } else if(count == 5) { reset_rfm(), printf("reg = 0x%X\n",reg);break; } } else break; } } uint8_t readreg(uint8_t reg) { uint8_t val;cs = 0;spi.write(reg & ~0x80);val = spi.write(0);cs = 1;return val; } void clearTxBuf() { writereg(RF22_REG_08_OPERATING_MODE2,0x01); writereg(RF22_REG_08_OPERATING_MODE2,0x00); } uint8_t setFrequency(double centre) { uint8_t fbsel = 0x40; if (centre >= 480.0) { centre /= 2; fbsel |= 0x20; } centre /= 10.0; double integerPart = floor(centre); double fractionalPart = centre - integerPart; uint8_t fb = (uint8_t)integerPart - 24; // Range 0 to 23 fbsel |= fb; uint16_t fc = fractionalPart * 64000; writereg(RF22_REG_73_FREQUENCY_OFFSET1, 0); // REVISIT writereg(RF22_REG_74_FREQUENCY_OFFSET2, 0); writereg(RF22_REG_75_FREQUENCY_BAND_SELECT, fbsel); writereg(RF22_REG_76_NOMINAL_CARRIER_FREQUENCY1, fc >> 8); writereg(RF22_REG_77_NOMINAL_CARRIER_FREQUENCY0, fc & 0xff); return 0; } void Init_BEACON_HW() { wait(0.1); cs=1; // chip must be deselected wait(0.1); spi.format(8,0); spi.frequency(10000000); //10MHz SCLK //should either have a flag for invalid SPI or discard this for actual case or add reset if (readreg(RF22_REG_00_DEVICE_TYPE) == 0x08) pc_bcn.printf("spi connection valid\r\n"); else {pc_bcn.printf("error in spi connection\r\n"); reset_rfm(); } writereg(RF22_REG_07_OPERATING_MODE1,0x80); //sw_reset wait(0.1); //takes time to reset clearTxBuf(); writereg(RF22_REG_07_OPERATING_MODE1,0x00); //standby mode //txfifoalmostempty writereg(RF22_REG_7D_TX_FIFO_CONTROL2,30); //Packet-engine registers writereg(RF22_REG_30_DATA_ACCESS_CONTROL,0x00); writereg(RF22_REG_33_HEADER_CONTROL2,0x08); writereg(RF22_REG_34_PREAMBLE_LENGTH,0x00); writereg(RF22_REG_0B_GPIO_CONFIGURATION0,0x15); // TX state writereg(RF22_REG_0C_GPIO_CONFIGURATION1,0x12); // RX state setFrequency(435.0); if((readreg(RF22_REG_02_DEVICE_STATUS)& 0x08)!= 0x00) { pc_bcn.printf("frequency not set properly\r\n"); reset_rfm(); } //set Modem Configuration //writereg(RF22_REG_1C_IF_FILTER_BANDWIDTH,0xdf); //writereg(RF22_REG_1F_CLOCK_RECOVERY_GEARSHIFT_OVERRIDE,0x03); //writereg(RF22_REG_20_CLOCK_RECOVERY_OVERSAMPLING_RATE,0x39); //writereg(RF22_REG_21_CLOCK_RECOVERY_OFFSET2,0x20); //writereg(RF22_REG_22_CLOCK_RECOVERY_OFFSET1,0x68); //updated 20 to 25 reg values from excel sheet for 1.2 Khz freq. deviation,fsk //writereg(RF22_REG_23_CLOCK_RECOVERY_OFFSET0,0xdc); //writereg(RF22_REG_24_CLOCK_RECOVERY_TIMING_LOOP_GAIN1,0x00); //writereg(RF22_REG_25_CLOCK_RECOVERY_TIMING_LOOP_GAIN0,0x6B); //writereg(RF22_REG_2C_OOK_COUNTER_VALUE_1,0x2C); //writereg(RF22_REG_2D_OOK_COUNTER_VALUE_2,0x11); //not required for fsk (OOK counter value) //writereg(RF22_REG_2E_SLICER_PEAK_HOLD,0x2A); //?? writereg(RF22_REG_58,0x80); //writereg(RF22_REG_69_AGC_OVERRIDE1,0x60); //Data rate set later writereg(RF22_REG_70_MODULATION_CONTROL1,0x20); writereg(RF22_REG_71_MODULATION_CONTROL2,0x21);//ook = 0x21 //set tx power writereg(RF22_REG_6D_TX_POWER,0x07); //20dbm //TX_packet_length written later } bool Check_ACK_RECEIVED() { if((readreg(RF22_REG_03_INTERRUPT_STATUS1) & 0x04) == 0x04) { printf("Packet sent: ACK received\r\n"); return 1; } else { pc_bcn.printf("Packet not sent\r\n"); return 0; } }