Version 0.5.0 of tinydtls

Dependents:   tinydtls_test_cellular tinydtls_test_ethernet tiny-dtls

Revision:
0:ff9ebe0cf0e9
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sha2/sha2.c	Fri Oct 18 13:18:30 2013 +0000
@@ -0,0 +1,1095 @@
+/*
+ * FILE:	sha2.c
+ * AUTHOR:	Aaron D. Gifford - http://www.aarongifford.com/
+ * 
+ * Copyright (c) 2000-2001, Aaron D. Gifford
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the copyright holder nor the names of contributors
+ *    may be used to endorse or promote products derived from this software
+ *    without specific prior written permission.
+ * 
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
+ */
+
+#include "../config.h"
+#include <string.h>	/* memcpy()/memset() or bcopy()/bzero() */
+#ifdef HAVE_ASSERT_H
+#include <assert.h>	/* assert() */
+#endif
+#include "sha2.h"
+
+/*
+ * ASSERT NOTE:
+ * Some sanity checking code is included using assert().  On my FreeBSD
+ * system, this additional code can be removed by compiling with NDEBUG
+ * defined.  Check your own systems manpage on assert() to see how to
+ * compile WITHOUT the sanity checking code on your system.
+ *
+ * UNROLLED TRANSFORM LOOP NOTE:
+ * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
+ * loop version for the hash transform rounds (defined using macros
+ * later in this file).  Either define on the command line, for example:
+ *
+ *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
+ *
+ * or define below:
+ *
+ *   #define SHA2_UNROLL_TRANSFORM
+ *
+ */
+
+
+/*** SHA-256/384/512 Machine Architecture Definitions *****************/
+/*
+ * BYTE_ORDER NOTE:
+ *
+ * Please make sure that your system defines BYTE_ORDER.  If your
+ * architecture is little-endian, make sure it also defines
+ * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
+ * equivilent.
+ *
+ * If your system does not define the above, then you can do so by
+ * hand like this:
+ *
+ *   #define LITTLE_ENDIAN 1234
+ *   #define BIG_ENDIAN    4321
+ *
+ * And for little-endian machines, add:
+ *
+ *   #define BYTE_ORDER LITTLE_ENDIAN 
+ *
+ * Or for big-endian machines:
+ *
+ *   #define BYTE_ORDER BIG_ENDIAN
+ *
+ * The FreeBSD machine this was written on defines BYTE_ORDER
+ * appropriately by including <sys/types.h> (which in turn includes
+ * <machine/endian.h> where the appropriate definitions are actually
+ * made).
+ */
+
+/* bergmann: define LITTLE_ENDIAN and BIG_ENDIAN to ease autoconf: */
+#ifndef LITTLE_ENDIAN
+#define LITTLE_ENDIAN 1234
+#endif
+#ifndef BIG_ENDIAN
+#define BIG_ENDIAN 4321
+#endif
+
+#ifndef BYTE_ORDER
+#  ifdef WORDS_BIGENDIAN
+#    define BYTE_ORDER BIG_ENDIAN
+#  else /* WORDS_BIGENDIAN */
+#    define BYTE_ORDER LITTLE_ENDIAN
+#  endif
+#endif
+
+#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
+#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
+#endif
+
+/*
+ * Define the followingsha2_* types to types of the correct length on
+ * the native archtecture.   Most BSD systems and Linux define u_intXX_t
+ * types.  Machines with very recent ANSI C headers, can use the
+ * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
+ * during compile or in the sha.h header file.
+ *
+ * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
+ * will need to define these three typedefs below (and the appropriate
+ * ones in sha.h too) by hand according to their system architecture.
+ *
+ * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
+ * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
+ */
+#ifdef SHA2_USE_INTTYPES_H
+
+typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
+typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
+typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
+
+#else /* SHA2_USE_INTTYPES_H */
+
+typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
+typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
+typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
+
+#endif /* SHA2_USE_INTTYPES_H */
+
+
+/*** SHA-256/384/512 Various Length Definitions ***********************/
+/* NOTE: Most of these are in sha2.h */
+#define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
+#define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
+#define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
+
+
+/*** ENDIAN REVERSAL MACROS *******************************************/
+#if BYTE_ORDER == LITTLE_ENDIAN
+#define REVERSE32(w,x)	{ \
+	sha2_word32 tmp = (w); \
+	tmp = (tmp >> 16) | (tmp << 16); \
+	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
+}
+#define REVERSE64(w,x)	{ \
+	sha2_word64 tmp = (w); \
+	tmp = (tmp >> 32) | (tmp << 32); \
+	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
+	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
+	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
+	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
+}
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+/*
+ * Macro for incrementally adding the unsigned 64-bit integer n to the
+ * unsigned 128-bit integer (represented using a two-element array of
+ * 64-bit words):
+ */
+#define ADDINC128(w,n)	{ \
+	(w)[0] += (sha2_word64)(n); \
+	if ((w)[0] < (n)) { \
+		(w)[1]++; \
+	} \
+}
+
+/*
+ * Macros for copying blocks of memory and for zeroing out ranges
+ * of memory.  Using these macros makes it easy to switch from
+ * using memset()/memcpy() and using bzero()/bcopy().
+ *
+ * Please define either SHA2_USE_MEMSET_MEMCPY or define
+ * SHA2_USE_BZERO_BCOPY depending on which function set you
+ * choose to use:
+ */
+#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
+/* Default to memset()/memcpy() if no option is specified */
+#define	SHA2_USE_MEMSET_MEMCPY	1
+#endif
+#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
+/* Abort with an error if BOTH options are defined */
+#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
+#endif
+
+#ifdef SHA2_USE_MEMSET_MEMCPY
+#define MEMSET_BZERO(p,l)	memset((p), 0, (l))
+#define MEMCPY_BCOPY(d,s,l)	memcpy((d), (s), (l))
+#endif
+#ifdef SHA2_USE_BZERO_BCOPY
+#define MEMSET_BZERO(p,l)	bzero((p), (l))
+#define MEMCPY_BCOPY(d,s,l)	bcopy((s), (d), (l))
+#endif
+
+
+/*** THE SIX LOGICAL FUNCTIONS ****************************************/
+/*
+ * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
+ *
+ *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
+ *   S is a ROTATION) because the SHA-256/384/512 description document
+ *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
+ *   same "backwards" definition.
+ */
+/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
+#define R(b,x) 		((x) >> (b))
+/* 32-bit Rotate-right (used in SHA-256): */
+#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
+/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
+#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
+
+/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
+#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
+#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
+
+/* Four of six logical functions used in SHA-256: */
+#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
+#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
+#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
+#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
+
+/* Four of six logical functions used in SHA-384 and SHA-512: */
+#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
+#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
+#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
+#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
+
+/*** INTERNAL FUNCTION PROTOTYPES *************************************/
+/* NOTE: These should not be accessed directly from outside this
+ * library -- they are intended for private internal visibility/use
+ * only.
+ */
+void SHA512_Last(SHA512_CTX*);
+void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
+void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
+
+#ifdef WITH_SHA256
+/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
+/* Hash constant words K for SHA-256: */
+const static sha2_word32 K256[64] = {
+	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
+	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
+	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
+	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
+	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
+	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
+	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
+	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
+	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
+	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
+	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
+	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
+	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
+	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
+	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
+	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
+};
+
+/* Initial hash value H for SHA-256: */
+const static sha2_word32 sha256_initial_hash_value[8] = {
+	0x6a09e667UL,
+	0xbb67ae85UL,
+	0x3c6ef372UL,
+	0xa54ff53aUL,
+	0x510e527fUL,
+	0x9b05688cUL,
+	0x1f83d9abUL,
+	0x5be0cd19UL
+};
+#endif
+
+#if defined(WITH_SHA384) || defined(WITH_SHA512)
+/* Hash constant words K for SHA-384 and SHA-512: */
+const static sha2_word64 K512[80] = {
+	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
+	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
+	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
+	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
+	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
+	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
+	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
+	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
+	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
+	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
+	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
+	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
+	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
+	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
+	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
+	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
+	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
+	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
+	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
+	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
+	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
+	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
+	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
+	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
+	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
+	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
+	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
+	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
+	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
+	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
+	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
+	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
+	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
+	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
+	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
+	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
+	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
+	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
+	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
+	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
+};
+#endif
+
+#ifdef WITH_SHA384
+/* Initial hash value H for SHA-384 */
+const static sha2_word64 sha384_initial_hash_value[8] = {
+	0xcbbb9d5dc1059ed8ULL,
+	0x629a292a367cd507ULL,
+	0x9159015a3070dd17ULL,
+	0x152fecd8f70e5939ULL,
+	0x67332667ffc00b31ULL,
+	0x8eb44a8768581511ULL,
+	0xdb0c2e0d64f98fa7ULL,
+	0x47b5481dbefa4fa4ULL
+};
+#endif
+
+#ifdef WITH_SHA512
+/* Initial hash value H for SHA-512 */
+const static sha2_word64 sha512_initial_hash_value[8] = {
+	0x6a09e667f3bcc908ULL,
+	0xbb67ae8584caa73bULL,
+	0x3c6ef372fe94f82bULL,
+	0xa54ff53a5f1d36f1ULL,
+	0x510e527fade682d1ULL,
+	0x9b05688c2b3e6c1fULL,
+	0x1f83d9abfb41bd6bULL,
+	0x5be0cd19137e2179ULL
+};
+#endif
+
+/*
+ * Constant used by SHA256/384/512_End() functions for converting the
+ * digest to a readable hexadecimal character string:
+ */
+static const char *sha2_hex_digits = "0123456789abcdef";
+
+
+/*** SHA-256: *********************************************************/
+#ifdef WITH_SHA256
+void SHA256_Init(SHA256_CTX* context) {
+	if (context == (SHA256_CTX*)0) {
+		return;
+	}
+	MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
+	MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
+	context->bitcount = 0;
+}
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-256 round macros: */
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
+	REVERSE32(*data++, W256[j]); \
+	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+             K256[j] + W256[j]; \
+	(d) += T1; \
+	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+	j++
+
+
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
+	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+	     K256[j] + (W256[j] = *data++); \
+	(d) += T1; \
+	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+	j++
+
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND256(a,b,c,d,e,f,g,h)	\
+	s0 = W256[(j+1)&0x0f]; \
+	s0 = sigma0_256(s0); \
+	s1 = W256[(j+14)&0x0f]; \
+	s1 = sigma1_256(s1); \
+	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
+	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
+	(d) += T1; \
+	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+	j++
+
+void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
+	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
+	sha2_word32	T1, *W256;
+	int		j;
+
+	W256 = (sha2_word32*)context->buffer;
+
+	/* Initialize registers with the prev. intermediate value */
+	a = context->state[0];
+	b = context->state[1];
+	c = context->state[2];
+	d = context->state[3];
+	e = context->state[4];
+	f = context->state[5];
+	g = context->state[6];
+	h = context->state[7];
+
+	j = 0;
+	do {
+		/* Rounds 0 to 15 (unrolled): */
+		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
+		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
+		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
+		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
+		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
+		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
+		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
+		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
+	} while (j < 16);
+
+	/* Now for the remaining rounds to 64: */
+	do {
+		ROUND256(a,b,c,d,e,f,g,h);
+		ROUND256(h,a,b,c,d,e,f,g);
+		ROUND256(g,h,a,b,c,d,e,f);
+		ROUND256(f,g,h,a,b,c,d,e);
+		ROUND256(e,f,g,h,a,b,c,d);
+		ROUND256(d,e,f,g,h,a,b,c);
+		ROUND256(c,d,e,f,g,h,a,b);
+		ROUND256(b,c,d,e,f,g,h,a);
+	} while (j < 64);
+
+	/* Compute the current intermediate hash value */
+	context->state[0] += a;
+	context->state[1] += b;
+	context->state[2] += c;
+	context->state[3] += d;
+	context->state[4] += e;
+	context->state[5] += f;
+	context->state[6] += g;
+	context->state[7] += h;
+
+	/* Clean up */
+	a = b = c = d = e = f = g = h = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
+	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
+	sha2_word32	T1, T2, *W256;
+	int		j;
+
+	W256 = (sha2_word32*)context->buffer;
+
+	/* Initialize registers with the prev. intermediate value */
+	a = context->state[0];
+	b = context->state[1];
+	c = context->state[2];
+	d = context->state[3];
+	e = context->state[4];
+	f = context->state[5];
+	g = context->state[6];
+	h = context->state[7];
+
+	j = 0;
+	do {
+#if BYTE_ORDER == LITTLE_ENDIAN
+		/* Copy data while converting to host byte order */
+		REVERSE32(*data++,W256[j]);
+		/* Apply the SHA-256 compression function to update a..h */
+		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+		/* Apply the SHA-256 compression function to update a..h with copy */
+		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+		T2 = Sigma0_256(a) + Maj(a, b, c);
+		h = g;
+		g = f;
+		f = e;
+		e = d + T1;
+		d = c;
+		c = b;
+		b = a;
+		a = T1 + T2;
+
+		j++;
+	} while (j < 16);
+
+	do {
+		/* Part of the message block expansion: */
+		s0 = W256[(j+1)&0x0f];
+		s0 = sigma0_256(s0);
+		s1 = W256[(j+14)&0x0f];	
+		s1 = sigma1_256(s1);
+
+		/* Apply the SHA-256 compression function to update a..h */
+		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 
+		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
+		T2 = Sigma0_256(a) + Maj(a, b, c);
+		h = g;
+		g = f;
+		f = e;
+		e = d + T1;
+		d = c;
+		c = b;
+		b = a;
+		a = T1 + T2;
+
+		j++;
+	} while (j < 64);
+
+	/* Compute the current intermediate hash value */
+	context->state[0] += a;
+	context->state[1] += b;
+	context->state[2] += c;
+	context->state[3] += d;
+	context->state[4] += e;
+	context->state[5] += f;
+	context->state[6] += g;
+	context->state[7] += h;
+
+	/* Clean up */
+	a = b = c = d = e = f = g = h = T1 = T2 = 0;
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
+
+void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
+	unsigned int	freespace, usedspace;
+
+	if (len == 0) {
+		/* Calling with no data is valid - we do nothing */
+		return;
+	}
+
+	/* Sanity check: */
+	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
+
+	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
+	if (usedspace > 0) {
+		/* Calculate how much free space is available in the buffer */
+		freespace = SHA256_BLOCK_LENGTH - usedspace;
+
+		if (len >= freespace) {
+			/* Fill the buffer completely and process it */
+			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
+			context->bitcount += freespace << 3;
+			len -= freespace;
+			data += freespace;
+			SHA256_Transform(context, (sha2_word32*)context->buffer);
+		} else {
+			/* The buffer is not yet full */
+			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
+			context->bitcount += len << 3;
+			/* Clean up: */
+			usedspace = freespace = 0;
+			return;
+		}
+	}
+	while (len >= SHA256_BLOCK_LENGTH) {
+		/* Process as many complete blocks as we can */
+		SHA256_Transform(context, (sha2_word32*)data);
+		context->bitcount += SHA256_BLOCK_LENGTH << 3;
+		len -= SHA256_BLOCK_LENGTH;
+		data += SHA256_BLOCK_LENGTH;
+	}
+	if (len > 0) {
+		/* There's left-overs, so save 'em */
+		MEMCPY_BCOPY(context->buffer, data, len);
+		context->bitcount += len << 3;
+	}
+	/* Clean up: */
+	usedspace = freespace = 0;
+}
+
+void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
+	sha2_word32	*d = (sha2_word32*)digest;
+	unsigned int	usedspace;
+
+	/* Sanity check: */
+	assert(context != (SHA256_CTX*)0);
+
+	/* If no digest buffer is passed, we don't bother doing this: */
+	if (digest != (sha2_byte*)0) {
+		usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
+#if BYTE_ORDER == LITTLE_ENDIAN
+		/* Convert FROM host byte order */
+		REVERSE64(context->bitcount,context->bitcount);
+#endif
+		if (usedspace > 0) {
+			/* Begin padding with a 1 bit: */
+			context->buffer[usedspace++] = 0x80;
+
+			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
+				/* Set-up for the last transform: */
+				MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
+			} else {
+				if (usedspace < SHA256_BLOCK_LENGTH) {
+					MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
+				}
+				/* Do second-to-last transform: */
+				SHA256_Transform(context, (sha2_word32*)context->buffer);
+
+				/* And set-up for the last transform: */
+				MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
+			}
+		} else {
+			/* Set-up for the last transform: */
+			MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
+
+			/* Begin padding with a 1 bit: */
+			*context->buffer = 0x80;
+		}
+		/* Set the bit count: */
+		*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
+
+		/* Final transform: */
+		SHA256_Transform(context, (sha2_word32*)context->buffer);
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+		{
+			/* Convert TO host byte order */
+			int	j;
+			for (j = 0; j < 8; j++) {
+				REVERSE32(context->state[j],context->state[j]);
+				*d++ = context->state[j];
+			}
+		}
+#else
+		MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
+#endif
+	}
+
+	/* Clean up state data: */
+	MEMSET_BZERO(context, sizeof(context));
+	usedspace = 0;
+}
+
+char *SHA256_End(SHA256_CTX* context, char buffer[]) {
+	sha2_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
+	int		i;
+
+	/* Sanity check: */
+	assert(context != (SHA256_CTX*)0);
+
+	if (buffer != (char*)0) {
+		SHA256_Final(digest, context);
+
+		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
+			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+			*buffer++ = sha2_hex_digits[*d & 0x0f];
+			d++;
+		}
+		*buffer = (char)0;
+	} else {
+		MEMSET_BZERO(context, sizeof(context));
+	}
+	MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
+	return buffer;
+}
+
+char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
+	SHA256_CTX	context;
+
+	SHA256_Init(&context);
+	SHA256_Update(&context, data, len);
+	return SHA256_End(&context, digest);
+}
+#endif
+
+/*** SHA-512: *********************************************************/
+#ifdef WITH_SHA512
+void SHA512_Init(SHA512_CTX* context) {
+	if (context == (SHA512_CTX*)0) {
+		return;
+	}
+	MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
+	MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
+	context->bitcount[0] = context->bitcount[1] =  0;
+}
+
+#ifdef SHA2_UNROLL_TRANSFORM
+
+/* Unrolled SHA-512 round macros: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+
+#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
+	REVERSE64(*data++, W512[j]); \
+	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
+             K512[j] + W512[j]; \
+	(d) += T1, \
+	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
+	j++
+
+
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
+	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
+             K512[j] + (W512[j] = *data++); \
+	(d) += T1; \
+	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
+	j++
+
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+
+#define ROUND512(a,b,c,d,e,f,g,h)	\
+	s0 = W512[(j+1)&0x0f]; \
+	s0 = sigma0_512(s0); \
+	s1 = W512[(j+14)&0x0f]; \
+	s1 = sigma1_512(s1); \
+	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
+             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
+	(d) += T1; \
+	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
+	j++
+
+void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
+	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
+	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
+	int		j;
+
+	/* Initialize registers with the prev. intermediate value */
+	a = context->state[0];
+	b = context->state[1];
+	c = context->state[2];
+	d = context->state[3];
+	e = context->state[4];
+	f = context->state[5];
+	g = context->state[6];
+	h = context->state[7];
+
+	j = 0;
+	do {
+		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
+		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
+		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
+		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
+		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
+		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
+		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
+		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
+	} while (j < 16);
+
+	/* Now for the remaining rounds up to 79: */
+	do {
+		ROUND512(a,b,c,d,e,f,g,h);
+		ROUND512(h,a,b,c,d,e,f,g);
+		ROUND512(g,h,a,b,c,d,e,f);
+		ROUND512(f,g,h,a,b,c,d,e);
+		ROUND512(e,f,g,h,a,b,c,d);
+		ROUND512(d,e,f,g,h,a,b,c);
+		ROUND512(c,d,e,f,g,h,a,b);
+		ROUND512(b,c,d,e,f,g,h,a);
+	} while (j < 80);
+
+	/* Compute the current intermediate hash value */
+	context->state[0] += a;
+	context->state[1] += b;
+	context->state[2] += c;
+	context->state[3] += d;
+	context->state[4] += e;
+	context->state[5] += f;
+	context->state[6] += g;
+	context->state[7] += h;
+
+	/* Clean up */
+	a = b = c = d = e = f = g = h = T1 = 0;
+}
+
+#else /* SHA2_UNROLL_TRANSFORM */
+
+void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
+	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
+	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
+	int		j;
+
+	/* Initialize registers with the prev. intermediate value */
+	a = context->state[0];
+	b = context->state[1];
+	c = context->state[2];
+	d = context->state[3];
+	e = context->state[4];
+	f = context->state[5];
+	g = context->state[6];
+	h = context->state[7];
+
+	j = 0;
+	do {
+#if BYTE_ORDER == LITTLE_ENDIAN
+		/* Convert TO host byte order */
+		REVERSE64(*data++, W512[j]);
+		/* Apply the SHA-512 compression function to update a..h */
+		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
+#else /* BYTE_ORDER == LITTLE_ENDIAN */
+		/* Apply the SHA-512 compression function to update a..h with copy */
+		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
+#endif /* BYTE_ORDER == LITTLE_ENDIAN */
+		T2 = Sigma0_512(a) + Maj(a, b, c);
+		h = g;
+		g = f;
+		f = e;
+		e = d + T1;
+		d = c;
+		c = b;
+		b = a;
+		a = T1 + T2;
+
+		j++;
+	} while (j < 16);
+
+	do {
+		/* Part of the message block expansion: */
+		s0 = W512[(j+1)&0x0f];
+		s0 = sigma0_512(s0);
+		s1 = W512[(j+14)&0x0f];
+		s1 =  sigma1_512(s1);
+
+		/* Apply the SHA-512 compression function to update a..h */
+		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
+		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
+		T2 = Sigma0_512(a) + Maj(a, b, c);
+		h = g;
+		g = f;
+		f = e;
+		e = d + T1;
+		d = c;
+		c = b;
+		b = a;
+		a = T1 + T2;
+
+		j++;
+	} while (j < 80);
+
+	/* Compute the current intermediate hash value */
+	context->state[0] += a;
+	context->state[1] += b;
+	context->state[2] += c;
+	context->state[3] += d;
+	context->state[4] += e;
+	context->state[5] += f;
+	context->state[6] += g;
+	context->state[7] += h;
+
+	/* Clean up */
+	a = b = c = d = e = f = g = h = T1 = T2 = 0;
+}
+
+#endif /* SHA2_UNROLL_TRANSFORM */
+
+void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
+	unsigned int	freespace, usedspace;
+
+	if (len == 0) {
+		/* Calling with no data is valid - we do nothing */
+		return;
+	}
+
+	/* Sanity check: */
+	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
+
+	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
+	if (usedspace > 0) {
+		/* Calculate how much free space is available in the buffer */
+		freespace = SHA512_BLOCK_LENGTH - usedspace;
+
+		if (len >= freespace) {
+			/* Fill the buffer completely and process it */
+			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
+			ADDINC128(context->bitcount, freespace << 3);
+			len -= freespace;
+			data += freespace;
+			SHA512_Transform(context, (sha2_word64*)context->buffer);
+		} else {
+			/* The buffer is not yet full */
+			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
+			ADDINC128(context->bitcount, len << 3);
+			/* Clean up: */
+			usedspace = freespace = 0;
+			return;
+		}
+	}
+	while (len >= SHA512_BLOCK_LENGTH) {
+		/* Process as many complete blocks as we can */
+		SHA512_Transform(context, (sha2_word64*)data);
+		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
+		len -= SHA512_BLOCK_LENGTH;
+		data += SHA512_BLOCK_LENGTH;
+	}
+	if (len > 0) {
+		/* There's left-overs, so save 'em */
+		MEMCPY_BCOPY(context->buffer, data, len);
+		ADDINC128(context->bitcount, len << 3);
+	}
+	/* Clean up: */
+	usedspace = freespace = 0;
+}
+
+void SHA512_Last(SHA512_CTX* context) {
+	unsigned int	usedspace;
+
+	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
+#if BYTE_ORDER == LITTLE_ENDIAN
+	/* Convert FROM host byte order */
+	REVERSE64(context->bitcount[0],context->bitcount[0]);
+	REVERSE64(context->bitcount[1],context->bitcount[1]);
+#endif
+	if (usedspace > 0) {
+		/* Begin padding with a 1 bit: */
+		context->buffer[usedspace++] = 0x80;
+
+		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
+			/* Set-up for the last transform: */
+			MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
+		} else {
+			if (usedspace < SHA512_BLOCK_LENGTH) {
+				MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
+			}
+			/* Do second-to-last transform: */
+			SHA512_Transform(context, (sha2_word64*)context->buffer);
+
+			/* And set-up for the last transform: */
+			MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
+		}
+	} else {
+		/* Prepare for final transform: */
+		MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
+
+		/* Begin padding with a 1 bit: */
+		*context->buffer = 0x80;
+	}
+	/* Store the length of input data (in bits): */
+	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
+	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
+
+	/* Final transform: */
+	SHA512_Transform(context, (sha2_word64*)context->buffer);
+}
+
+void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
+	sha2_word64	*d = (sha2_word64*)digest;
+
+	/* Sanity check: */
+	assert(context != (SHA512_CTX*)0);
+
+	/* If no digest buffer is passed, we don't bother doing this: */
+	if (digest != (sha2_byte*)0) {
+		SHA512_Last(context);
+
+		/* Save the hash data for output: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+		{
+			/* Convert TO host byte order */
+			int	j;
+			for (j = 0; j < 8; j++) {
+				REVERSE64(context->state[j],context->state[j]);
+				*d++ = context->state[j];
+			}
+		}
+#else
+		MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
+#endif
+	}
+
+	/* Zero out state data */
+	MEMSET_BZERO(context, sizeof(context));
+}
+
+char *SHA512_End(SHA512_CTX* context, char buffer[]) {
+	sha2_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
+	int		i;
+
+	/* Sanity check: */
+	assert(context != (SHA512_CTX*)0);
+
+	if (buffer != (char*)0) {
+		SHA512_Final(digest, context);
+
+		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
+			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+			*buffer++ = sha2_hex_digits[*d & 0x0f];
+			d++;
+		}
+		*buffer = (char)0;
+	} else {
+		MEMSET_BZERO(context, sizeof(context));
+	}
+	MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
+	return buffer;
+}
+
+char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
+	SHA512_CTX	context;
+
+	SHA512_Init(&context);
+	SHA512_Update(&context, data, len);
+	return SHA512_End(&context, digest);
+}
+#endif
+
+/*** SHA-384: *********************************************************/
+#ifdef WITH_SHA384
+void SHA384_Init(SHA384_CTX* context) {
+	if (context == (SHA384_CTX*)0) {
+		return;
+	}
+	MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
+	MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
+	context->bitcount[0] = context->bitcount[1] = 0;
+}
+
+void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
+	SHA512_Update((SHA512_CTX*)context, data, len);
+}
+
+void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
+	sha2_word64	*d = (sha2_word64*)digest;
+
+	/* Sanity check: */
+	assert(context != (SHA384_CTX*)0);
+
+	/* If no digest buffer is passed, we don't bother doing this: */
+	if (digest != (sha2_byte*)0) {
+		SHA512_Last((SHA512_CTX*)context);
+
+		/* Save the hash data for output: */
+#if BYTE_ORDER == LITTLE_ENDIAN
+		{
+			/* Convert TO host byte order */
+			int	j;
+			for (j = 0; j < 6; j++) {
+				REVERSE64(context->state[j],context->state[j]);
+				*d++ = context->state[j];
+			}
+		}
+#else
+		MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
+#endif
+	}
+
+	/* Zero out state data */
+	MEMSET_BZERO(context, sizeof(context));
+}
+
+char *SHA384_End(SHA384_CTX* context, char buffer[]) {
+	sha2_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
+	int		i;
+
+	/* Sanity check: */
+	assert(context != (SHA384_CTX*)0);
+
+	if (buffer != (char*)0) {
+		SHA384_Final(digest, context);
+
+		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
+			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+			*buffer++ = sha2_hex_digits[*d & 0x0f];
+			d++;
+		}
+		*buffer = (char)0;
+	} else {
+		MEMSET_BZERO(context, sizeof(context));
+	}
+	MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
+	return buffer;
+}
+
+char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
+	SHA384_CTX	context;
+
+	SHA384_Init(&context);
+	SHA384_Update(&context, data, len);
+	return SHA384_End(&context, digest);
+}
+#endif