This is a port of cyaSSL 2.7.0.
Dependents: CyaSSL_DTLS_Cellular CyaSSL_DTLS_Ethernet
Diff: ctaocrypt/src/sha.c
- Revision:
- 0:714293de3836
diff -r 000000000000 -r 714293de3836 ctaocrypt/src/sha.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ctaocrypt/src/sha.c Thu Sep 05 10:33:04 2013 +0000 @@ -0,0 +1,354 @@ +/* sha.c + * + * Copyright (C) 2006-2013 wolfSSL Inc. + * + * This file is part of CyaSSL. + * + * CyaSSL is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * CyaSSL is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA + */ + + +#ifdef HAVE_CONFIG_H + #include <config.h> +#endif + +#include <cyassl/ctaocrypt/settings.h> + +#ifndef NO_SHA + +#include <cyassl/ctaocrypt/sha.h> +#ifdef NO_INLINE + #include <cyassl/ctaocrypt/misc.h> +#else + #include <ctaocrypt/src/misc.c> +#endif + + +#ifdef STM32F2_HASH + /* + * STM32F2 hardware SHA1 support through the STM32F2 standard peripheral + * library. Documentation located in STM32F2xx Standard Peripheral Library + * document (See note in README). + */ + #include "stm32f2xx.h" + #include "stm32f2xx_hash.h" + + void InitSha(Sha* sha) + { + /* STM32F2 struct notes: + * sha->buffer = first 4 bytes used to hold partial block if needed + * sha->buffLen = num bytes currently stored in sha->buffer + * sha->loLen = num bytes that have been written to STM32 FIFO + */ + XMEMSET(sha->buffer, 0, SHA_REG_SIZE); + sha->buffLen = 0; + sha->loLen = 0; + + /* initialize HASH peripheral */ + HASH_DeInit(); + + /* configure algo used, algo mode, datatype */ + HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE); + HASH->CR |= (HASH_AlgoSelection_SHA1 | HASH_AlgoMode_HASH + | HASH_DataType_8b); + + /* reset HASH processor */ + HASH->CR |= HASH_CR_INIT; + } + + void ShaUpdate(Sha* sha, const byte* data, word32 len) + { + word32 i = 0; + word32 fill = 0; + word32 diff = 0; + + /* if saved partial block is available */ + if (sha->buffLen) { + fill = 4 - sha->buffLen; + + /* if enough data to fill, fill and push to FIFO */ + if (fill <= len) { + XMEMCPY((byte*)sha->buffer + sha->buffLen, data, fill); + HASH_DataIn(*(uint32_t*)sha->buffer); + + data += fill; + len -= fill; + sha->loLen += 4; + sha->buffLen = 0; + } else { + /* append partial to existing stored block */ + XMEMCPY((byte*)sha->buffer + sha->buffLen, data, len); + sha->buffLen += len; + return; + } + } + + /* write input block in the IN FIFO */ + for(i = 0; i < len; i += 4) + { + diff = len - i; + if ( diff < 4) { + /* store incomplete last block, not yet in FIFO */ + XMEMSET(sha->buffer, 0, SHA_REG_SIZE); + XMEMCPY((byte*)sha->buffer, data, diff); + sha->buffLen = diff; + } else { + HASH_DataIn(*(uint32_t*)data); + data+=4; + } + } + + /* keep track of total data length thus far */ + sha->loLen += (len - sha->buffLen); + } + + void ShaFinal(Sha* sha, byte* hash) + { + __IO uint16_t nbvalidbitsdata = 0; + + /* finish reading any trailing bytes into FIFO */ + if (sha->buffLen) { + HASH_DataIn(*(uint32_t*)sha->buffer); + sha->loLen += sha->buffLen; + } + + /* calculate number of valid bits in last word of input data */ + nbvalidbitsdata = 8 * (sha->loLen % SHA_REG_SIZE); + + /* configure number of valid bits in last word of the data */ + HASH_SetLastWordValidBitsNbr(nbvalidbitsdata); + + /* start HASH processor */ + HASH_StartDigest(); + + /* wait until Busy flag == RESET */ + while (HASH_GetFlagStatus(HASH_FLAG_BUSY) != RESET) {} + + /* read message digest */ + sha->digest[0] = HASH->HR[0]; + sha->digest[1] = HASH->HR[1]; + sha->digest[2] = HASH->HR[2]; + sha->digest[3] = HASH->HR[3]; + sha->digest[4] = HASH->HR[4]; + + ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE); + + XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE); + + InitSha(sha); /* reset state */ + } + +#else /* CTaoCrypt software implementation */ + +#ifndef min + + static INLINE word32 min(word32 a, word32 b) + { + return a > b ? b : a; + } + +#endif /* min */ + + +void InitSha(Sha* sha) +{ + sha->digest[0] = 0x67452301L; + sha->digest[1] = 0xEFCDAB89L; + sha->digest[2] = 0x98BADCFEL; + sha->digest[3] = 0x10325476L; + sha->digest[4] = 0xC3D2E1F0L; + + sha->buffLen = 0; + sha->loLen = 0; + sha->hiLen = 0; +} + +#define blk0(i) (W[i] = sha->buffer[i]) +#define blk1(i) (W[i&15] = \ + rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1)) + +#define f1(x,y,z) (z^(x &(y^z))) +#define f2(x,y,z) (x^y^z) +#define f3(x,y,z) ((x&y)|(z&(x|y))) +#define f4(x,y,z) (x^y^z) + +/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ +#define R0(v,w,x,y,z,i) z+= f1(w,x,y) + blk0(i) + 0x5A827999+ \ + rotlFixed(v,5); w = rotlFixed(w,30); +#define R1(v,w,x,y,z,i) z+= f1(w,x,y) + blk1(i) + 0x5A827999+ \ + rotlFixed(v,5); w = rotlFixed(w,30); +#define R2(v,w,x,y,z,i) z+= f2(w,x,y) + blk1(i) + 0x6ED9EBA1+ \ + rotlFixed(v,5); w = rotlFixed(w,30); +#define R3(v,w,x,y,z,i) z+= f3(w,x,y) + blk1(i) + 0x8F1BBCDC+ \ + rotlFixed(v,5); w = rotlFixed(w,30); +#define R4(v,w,x,y,z,i) z+= f4(w,x,y) + blk1(i) + 0xCA62C1D6+ \ + rotlFixed(v,5); w = rotlFixed(w,30); + + +static void Transform(Sha* sha) +{ + word32 W[SHA_BLOCK_SIZE / sizeof(word32)]; + + /* Copy context->state[] to working vars */ + word32 a = sha->digest[0]; + word32 b = sha->digest[1]; + word32 c = sha->digest[2]; + word32 d = sha->digest[3]; + word32 e = sha->digest[4]; + +#ifdef USE_SLOW_SHA + word32 t, i; + + for (i = 0; i < 16; i++) { + R0(a, b, c, d, e, i); + t = e; e = d; d = c; c = b; b = a; a = t; + } + + for (; i < 20; i++) { + R1(a, b, c, d, e, i); + t = e; e = d; d = c; c = b; b = a; a = t; + } + + for (; i < 40; i++) { + R2(a, b, c, d, e, i); + t = e; e = d; d = c; c = b; b = a; a = t; + } + + for (; i < 60; i++) { + R3(a, b, c, d, e, i); + t = e; e = d; d = c; c = b; b = a; a = t; + } + + for (; i < 80; i++) { + R4(a, b, c, d, e, i); + t = e; e = d; d = c; c = b; b = a; a = t; + } +#else + /* nearly 1 K bigger in code size but 25% faster */ + /* 4 rounds of 20 operations each. Loop unrolled. */ + R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); + R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); + R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); + R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); + + R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); + + R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); + R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); + R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); + R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); + R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); + + R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); + R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); + R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); + R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); + R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); + + R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); + R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); + R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); + R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); + R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); +#endif + + /* Add the working vars back into digest state[] */ + sha->digest[0] += a; + sha->digest[1] += b; + sha->digest[2] += c; + sha->digest[3] += d; + sha->digest[4] += e; +} + + +static INLINE void AddLength(Sha* sha, word32 len) +{ + word32 tmp = sha->loLen; + if ( (sha->loLen += len) < tmp) + sha->hiLen++; /* carry low to high */ +} + + +void ShaUpdate(Sha* sha, const byte* data, word32 len) +{ + /* do block size increments */ + byte* local = (byte*)sha->buffer; + + while (len) { + word32 add = min(len, SHA_BLOCK_SIZE - sha->buffLen); + XMEMCPY(&local[sha->buffLen], data, add); + + sha->buffLen += add; + data += add; + len -= add; + + if (sha->buffLen == SHA_BLOCK_SIZE) { + #ifdef LITTLE_ENDIAN_ORDER + ByteReverseBytes(local, local, SHA_BLOCK_SIZE); + #endif + Transform(sha); + AddLength(sha, SHA_BLOCK_SIZE); + sha->buffLen = 0; + } + } +} + + +void ShaFinal(Sha* sha, byte* hash) +{ + byte* local = (byte*)sha->buffer; + + AddLength(sha, sha->buffLen); /* before adding pads */ + + local[sha->buffLen++] = 0x80; /* add 1 */ + + /* pad with zeros */ + if (sha->buffLen > SHA_PAD_SIZE) { + XMEMSET(&local[sha->buffLen], 0, SHA_BLOCK_SIZE - sha->buffLen); + sha->buffLen += SHA_BLOCK_SIZE - sha->buffLen; + + #ifdef LITTLE_ENDIAN_ORDER + ByteReverseBytes(local, local, SHA_BLOCK_SIZE); + #endif + Transform(sha); + sha->buffLen = 0; + } + XMEMSET(&local[sha->buffLen], 0, SHA_PAD_SIZE - sha->buffLen); + + /* put lengths in bits */ + sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + + (sha->hiLen << 3); + sha->loLen = sha->loLen << 3; + + /* store lengths */ + #ifdef LITTLE_ENDIAN_ORDER + ByteReverseBytes(local, local, SHA_BLOCK_SIZE); + #endif + /* ! length ordering dependent on digest endian type ! */ + XMEMCPY(&local[SHA_PAD_SIZE], &sha->hiLen, sizeof(word32)); + XMEMCPY(&local[SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32)); + + Transform(sha); + #ifdef LITTLE_ENDIAN_ORDER + ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE); + #endif + XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE); + + InitSha(sha); /* reset state */ +} + +#endif /* STM32F2_HASH */ + +#endif /* NO_SHA */