This is a port of cyaSSL 2.7.0.
Dependents: CyaSSL_DTLS_Cellular CyaSSL_DTLS_Ethernet
ctaocrypt/src/sha.c
- Committer:
- ashleymills
- Date:
- 2013-09-05
- Revision:
- 1:c0ce1562443a
- Parent:
- 0:714293de3836
File content as of revision 1:c0ce1562443a:
/* sha.c * * Copyright (C) 2006-2013 wolfSSL Inc. * * This file is part of CyaSSL. * * CyaSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * CyaSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cyassl/ctaocrypt/settings.h> #ifndef NO_SHA #include <cyassl/ctaocrypt/sha.h> #ifdef NO_INLINE #include <cyassl/ctaocrypt/misc.h> #else #include <ctaocrypt/src/misc.c> #endif #ifdef STM32F2_HASH /* * STM32F2 hardware SHA1 support through the STM32F2 standard peripheral * library. Documentation located in STM32F2xx Standard Peripheral Library * document (See note in README). */ #include "stm32f2xx.h" #include "stm32f2xx_hash.h" void InitSha(Sha* sha) { /* STM32F2 struct notes: * sha->buffer = first 4 bytes used to hold partial block if needed * sha->buffLen = num bytes currently stored in sha->buffer * sha->loLen = num bytes that have been written to STM32 FIFO */ XMEMSET(sha->buffer, 0, SHA_REG_SIZE); sha->buffLen = 0; sha->loLen = 0; /* initialize HASH peripheral */ HASH_DeInit(); /* configure algo used, algo mode, datatype */ HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE); HASH->CR |= (HASH_AlgoSelection_SHA1 | HASH_AlgoMode_HASH | HASH_DataType_8b); /* reset HASH processor */ HASH->CR |= HASH_CR_INIT; } void ShaUpdate(Sha* sha, const byte* data, word32 len) { word32 i = 0; word32 fill = 0; word32 diff = 0; /* if saved partial block is available */ if (sha->buffLen) { fill = 4 - sha->buffLen; /* if enough data to fill, fill and push to FIFO */ if (fill <= len) { XMEMCPY((byte*)sha->buffer + sha->buffLen, data, fill); HASH_DataIn(*(uint32_t*)sha->buffer); data += fill; len -= fill; sha->loLen += 4; sha->buffLen = 0; } else { /* append partial to existing stored block */ XMEMCPY((byte*)sha->buffer + sha->buffLen, data, len); sha->buffLen += len; return; } } /* write input block in the IN FIFO */ for(i = 0; i < len; i += 4) { diff = len - i; if ( diff < 4) { /* store incomplete last block, not yet in FIFO */ XMEMSET(sha->buffer, 0, SHA_REG_SIZE); XMEMCPY((byte*)sha->buffer, data, diff); sha->buffLen = diff; } else { HASH_DataIn(*(uint32_t*)data); data+=4; } } /* keep track of total data length thus far */ sha->loLen += (len - sha->buffLen); } void ShaFinal(Sha* sha, byte* hash) { __IO uint16_t nbvalidbitsdata = 0; /* finish reading any trailing bytes into FIFO */ if (sha->buffLen) { HASH_DataIn(*(uint32_t*)sha->buffer); sha->loLen += sha->buffLen; } /* calculate number of valid bits in last word of input data */ nbvalidbitsdata = 8 * (sha->loLen % SHA_REG_SIZE); /* configure number of valid bits in last word of the data */ HASH_SetLastWordValidBitsNbr(nbvalidbitsdata); /* start HASH processor */ HASH_StartDigest(); /* wait until Busy flag == RESET */ while (HASH_GetFlagStatus(HASH_FLAG_BUSY) != RESET) {} /* read message digest */ sha->digest[0] = HASH->HR[0]; sha->digest[1] = HASH->HR[1]; sha->digest[2] = HASH->HR[2]; sha->digest[3] = HASH->HR[3]; sha->digest[4] = HASH->HR[4]; ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE); XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE); InitSha(sha); /* reset state */ } #else /* CTaoCrypt software implementation */ #ifndef min static INLINE word32 min(word32 a, word32 b) { return a > b ? b : a; } #endif /* min */ void InitSha(Sha* sha) { sha->digest[0] = 0x67452301L; sha->digest[1] = 0xEFCDAB89L; sha->digest[2] = 0x98BADCFEL; sha->digest[3] = 0x10325476L; sha->digest[4] = 0xC3D2E1F0L; sha->buffLen = 0; sha->loLen = 0; sha->hiLen = 0; } #define blk0(i) (W[i] = sha->buffer[i]) #define blk1(i) (W[i&15] = \ rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1)) #define f1(x,y,z) (z^(x &(y^z))) #define f2(x,y,z) (x^y^z) #define f3(x,y,z) ((x&y)|(z&(x|y))) #define f4(x,y,z) (x^y^z) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+= f1(w,x,y) + blk0(i) + 0x5A827999+ \ rotlFixed(v,5); w = rotlFixed(w,30); #define R1(v,w,x,y,z,i) z+= f1(w,x,y) + blk1(i) + 0x5A827999+ \ rotlFixed(v,5); w = rotlFixed(w,30); #define R2(v,w,x,y,z,i) z+= f2(w,x,y) + blk1(i) + 0x6ED9EBA1+ \ rotlFixed(v,5); w = rotlFixed(w,30); #define R3(v,w,x,y,z,i) z+= f3(w,x,y) + blk1(i) + 0x8F1BBCDC+ \ rotlFixed(v,5); w = rotlFixed(w,30); #define R4(v,w,x,y,z,i) z+= f4(w,x,y) + blk1(i) + 0xCA62C1D6+ \ rotlFixed(v,5); w = rotlFixed(w,30); static void Transform(Sha* sha) { word32 W[SHA_BLOCK_SIZE / sizeof(word32)]; /* Copy context->state[] to working vars */ word32 a = sha->digest[0]; word32 b = sha->digest[1]; word32 c = sha->digest[2]; word32 d = sha->digest[3]; word32 e = sha->digest[4]; #ifdef USE_SLOW_SHA word32 t, i; for (i = 0; i < 16; i++) { R0(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 20; i++) { R1(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 40; i++) { R2(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 60; i++) { R3(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } for (; i < 80; i++) { R4(a, b, c, d, e, i); t = e; e = d; d = c; c = b; b = a; a = t; } #else /* nearly 1 K bigger in code size but 25% faster */ /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); #endif /* Add the working vars back into digest state[] */ sha->digest[0] += a; sha->digest[1] += b; sha->digest[2] += c; sha->digest[3] += d; sha->digest[4] += e; } static INLINE void AddLength(Sha* sha, word32 len) { word32 tmp = sha->loLen; if ( (sha->loLen += len) < tmp) sha->hiLen++; /* carry low to high */ } void ShaUpdate(Sha* sha, const byte* data, word32 len) { /* do block size increments */ byte* local = (byte*)sha->buffer; while (len) { word32 add = min(len, SHA_BLOCK_SIZE - sha->buffLen); XMEMCPY(&local[sha->buffLen], data, add); sha->buffLen += add; data += add; len -= add; if (sha->buffLen == SHA_BLOCK_SIZE) { #ifdef LITTLE_ENDIAN_ORDER ByteReverseBytes(local, local, SHA_BLOCK_SIZE); #endif Transform(sha); AddLength(sha, SHA_BLOCK_SIZE); sha->buffLen = 0; } } } void ShaFinal(Sha* sha, byte* hash) { byte* local = (byte*)sha->buffer; AddLength(sha, sha->buffLen); /* before adding pads */ local[sha->buffLen++] = 0x80; /* add 1 */ /* pad with zeros */ if (sha->buffLen > SHA_PAD_SIZE) { XMEMSET(&local[sha->buffLen], 0, SHA_BLOCK_SIZE - sha->buffLen); sha->buffLen += SHA_BLOCK_SIZE - sha->buffLen; #ifdef LITTLE_ENDIAN_ORDER ByteReverseBytes(local, local, SHA_BLOCK_SIZE); #endif Transform(sha); sha->buffLen = 0; } XMEMSET(&local[sha->buffLen], 0, SHA_PAD_SIZE - sha->buffLen); /* put lengths in bits */ sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + (sha->hiLen << 3); sha->loLen = sha->loLen << 3; /* store lengths */ #ifdef LITTLE_ENDIAN_ORDER ByteReverseBytes(local, local, SHA_BLOCK_SIZE); #endif /* ! length ordering dependent on digest endian type ! */ XMEMCPY(&local[SHA_PAD_SIZE], &sha->hiLen, sizeof(word32)); XMEMCPY(&local[SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32)); Transform(sha); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE); #endif XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE); InitSha(sha); /* reset state */ } #endif /* STM32F2_HASH */ #endif /* NO_SHA */