This is a port of cyaSSL 2.7.0.
Dependents: CyaSSL_DTLS_Cellular CyaSSL_DTLS_Ethernet
ctaocrypt/src/sha256.c
- Committer:
- ashleymills
- Date:
- 2013-09-05
- Revision:
- 0:714293de3836
File content as of revision 0:714293de3836:
/* sha256.c * * Copyright (C) 2006-2013 wolfSSL Inc. * * This file is part of CyaSSL. * * CyaSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * CyaSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ /* code submitted by raphael.huck@efixo.com */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cyassl/ctaocrypt/settings.h> #ifndef NO_SHA256 #include <cyassl/ctaocrypt/sha256.h> #ifdef NO_INLINE #include <cyassl/ctaocrypt/misc.h> #else #include <ctaocrypt/src/misc.c> #endif #ifndef min static INLINE word32 min(word32 a, word32 b) { return a > b ? b : a; } #endif /* min */ void InitSha256(Sha256* sha256) { sha256->digest[0] = 0x6A09E667L; sha256->digest[1] = 0xBB67AE85L; sha256->digest[2] = 0x3C6EF372L; sha256->digest[3] = 0xA54FF53AL; sha256->digest[4] = 0x510E527FL; sha256->digest[5] = 0x9B05688CL; sha256->digest[6] = 0x1F83D9ABL; sha256->digest[7] = 0x5BE0CD19L; sha256->buffLen = 0; sha256->loLen = 0; sha256->hiLen = 0; } static const word32 K[64] = { 0x428A2F98L, 0x71374491L, 0xB5C0FBCFL, 0xE9B5DBA5L, 0x3956C25BL, 0x59F111F1L, 0x923F82A4L, 0xAB1C5ED5L, 0xD807AA98L, 0x12835B01L, 0x243185BEL, 0x550C7DC3L, 0x72BE5D74L, 0x80DEB1FEL, 0x9BDC06A7L, 0xC19BF174L, 0xE49B69C1L, 0xEFBE4786L, 0x0FC19DC6L, 0x240CA1CCL, 0x2DE92C6FL, 0x4A7484AAL, 0x5CB0A9DCL, 0x76F988DAL, 0x983E5152L, 0xA831C66DL, 0xB00327C8L, 0xBF597FC7L, 0xC6E00BF3L, 0xD5A79147L, 0x06CA6351L, 0x14292967L, 0x27B70A85L, 0x2E1B2138L, 0x4D2C6DFCL, 0x53380D13L, 0x650A7354L, 0x766A0ABBL, 0x81C2C92EL, 0x92722C85L, 0xA2BFE8A1L, 0xA81A664BL, 0xC24B8B70L, 0xC76C51A3L, 0xD192E819L, 0xD6990624L, 0xF40E3585L, 0x106AA070L, 0x19A4C116L, 0x1E376C08L, 0x2748774CL, 0x34B0BCB5L, 0x391C0CB3L, 0x4ED8AA4AL, 0x5B9CCA4FL, 0x682E6FF3L, 0x748F82EEL, 0x78A5636FL, 0x84C87814L, 0x8CC70208L, 0x90BEFFFAL, 0xA4506CEBL, 0xBEF9A3F7L, 0xC67178F2L }; #define Ch(x,y,z) (z ^ (x & (y ^ z))) #define Maj(x,y,z) (((x | y) & z) | (x & y)) #define S(x, n) rotrFixed(x, n) #define R(x, n) (((x)&0xFFFFFFFFU)>>(n)) #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) #define RND(a,b,c,d,e,f,g,h,i) \ t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; static void Transform(Sha256* sha256) { word32 S[8], W[64], t0, t1; int i; /* Copy context->state[] to working vars */ for (i = 0; i < 8; i++) S[i] = sha256->digest[i]; for (i = 0; i < 16; i++) W[i] = sha256->buffer[i]; for (i = 16; i < 64; i++) W[i] = Gamma1(W[i-2]) + W[i-7] + Gamma0(W[i-15]) + W[i-16]; for (i = 0; i < 64; i += 8) { RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i+0); RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],i+1); RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],i+2); RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],i+3); RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],i+4); RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],i+5); RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],i+6); RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],i+7); } /* Add the working vars back into digest state[] */ for (i = 0; i < 8; i++) { sha256->digest[i] += S[i]; } } static INLINE void AddLength(Sha256* sha256, word32 len) { word32 tmp = sha256->loLen; if ( (sha256->loLen += len) < tmp) sha256->hiLen++; /* carry low to high */ } void Sha256Update(Sha256* sha256, const byte* data, word32 len) { /* do block size increments */ byte* local = (byte*)sha256->buffer; while (len) { word32 add = min(len, SHA256_BLOCK_SIZE - sha256->buffLen); XMEMCPY(&local[sha256->buffLen], data, add); sha256->buffLen += add; data += add; len -= add; if (sha256->buffLen == SHA256_BLOCK_SIZE) { #ifdef LITTLE_ENDIAN_ORDER ByteReverseBytes(local, local, SHA256_BLOCK_SIZE); #endif Transform(sha256); AddLength(sha256, SHA256_BLOCK_SIZE); sha256->buffLen = 0; } } } void Sha256Final(Sha256* sha256, byte* hash) { byte* local = (byte*)sha256->buffer; AddLength(sha256, sha256->buffLen); /* before adding pads */ local[sha256->buffLen++] = 0x80; /* add 1 */ /* pad with zeros */ if (sha256->buffLen > SHA256_PAD_SIZE) { XMEMSET(&local[sha256->buffLen], 0, SHA256_BLOCK_SIZE - sha256->buffLen); sha256->buffLen += SHA256_BLOCK_SIZE - sha256->buffLen; #ifdef LITTLE_ENDIAN_ORDER ByteReverseBytes(local, local, SHA256_BLOCK_SIZE); #endif Transform(sha256); sha256->buffLen = 0; } XMEMSET(&local[sha256->buffLen], 0, SHA256_PAD_SIZE - sha256->buffLen); /* put lengths in bits */ sha256->hiLen = (sha256->loLen >> (8*sizeof(sha256->loLen) - 3)) + (sha256->hiLen << 3); sha256->loLen = sha256->loLen << 3; /* store lengths */ #ifdef LITTLE_ENDIAN_ORDER ByteReverseBytes(local, local, SHA256_BLOCK_SIZE); #endif /* ! length ordering dependent on digest endian type ! */ XMEMCPY(&local[SHA256_PAD_SIZE], &sha256->hiLen, sizeof(word32)); XMEMCPY(&local[SHA256_PAD_SIZE + sizeof(word32)], &sha256->loLen, sizeof(word32)); Transform(sha256); #ifdef LITTLE_ENDIAN_ORDER ByteReverseWords(sha256->digest, sha256->digest, SHA256_DIGEST_SIZE); #endif XMEMCPY(hash, sha256->digest, SHA256_DIGEST_SIZE); InitSha256(sha256); /* reset state */ } #endif /* NO_SHA256 */