cyassl re-port with cellular comms, PSK test
Dependencies: VodafoneUSBModem_bleedingedge2 mbed-rtos mbed-src
Diff: cyassllib/cyassl/ctaocrypt/tfm.h
- Revision:
- 0:e979170e02e7
diff -r 000000000000 -r e979170e02e7 cyassllib/cyassl/ctaocrypt/tfm.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/cyassllib/cyassl/ctaocrypt/tfm.h Fri Apr 26 16:54:58 2013 +0000 @@ -0,0 +1,686 @@ +/* tfm.h + * + * Copyright (C) 2006-2012 Sawtooth Consulting Ltd. + * + * This file is part of CyaSSL. + * + * CyaSSL is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * CyaSSL is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA + */ + + +/* + * Based on public domain TomsFastMath 0.10 by Tom St Denis, tomstdenis@iahu.ca, + * http://math.libtomcrypt.com + */ + + +/** + * Edited by Moisés Guimarães (moises.guimaraes@phoebus.com.br) + * to fit CyaSSL's needs. + */ + + +#ifndef CTAO_CRYPT_TFM_H +#define CTAO_CRYPT_TFM_H + +#include <cyassl/ctaocrypt/types.h> +#ifndef CHAR_BIT + #include <limits.h> +#endif + + +#ifdef __cplusplus + extern "C" { +#endif + +#ifndef MIN + #define MIN(x,y) ((x)<(y)?(x):(y)) +#endif + +#ifndef MAX + #define MAX(x,y) ((x)>(y)?(x):(y)) +#endif + + +/* autodetect x86-64 and make sure we are using 64-bit digits with x86-64 asm */ +#if defined(__x86_64__) + #if defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM) + #error x86-64 detected, x86-32/SSE2/ARM optimizations are not valid! + #endif + #if !defined(TFM_X86_64) && !defined(TFM_NO_ASM) + #define TFM_X86_64 + #endif +#endif +#if defined(TFM_X86_64) + #if !defined(FP_64BIT) + #define FP_64BIT + #endif +#endif +/* use 64-bit digit even if not using asm on x86_64 */ +#if defined(__x86_64__) && !defined(FP_64BIT) + #define FP_64BIT +#endif + +/* try to detect x86-32 */ +#if defined(__i386__) && !defined(TFM_SSE2) + #if defined(TFM_X86_64) || defined(TFM_ARM) + #error x86-32 detected, x86-64/ARM optimizations are not valid! + #endif + #if !defined(TFM_X86) && !defined(TFM_NO_ASM) + #define TFM_X86 + #endif +#endif + +/* make sure we're 32-bit for x86-32/sse/arm/ppc32 */ +#if (defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM) || defined(TFM_PPC32)) && defined(FP_64BIT) + #warning x86-32, SSE2 and ARM, PPC32 optimizations require 32-bit digits (undefining) + #undef FP_64BIT +#endif + +/* multi asms? */ +#ifdef TFM_X86 + #define TFM_ASM +#endif +#ifdef TFM_X86_64 + #ifdef TFM_ASM + #error TFM_ASM already defined! + #endif + #define TFM_ASM +#endif +#ifdef TFM_SSE2 + #ifdef TFM_ASM + #error TFM_ASM already defined! + #endif + #define TFM_ASM +#endif +#ifdef TFM_ARM + #ifdef TFM_ASM + #error TFM_ASM already defined! + #endif + #define TFM_ASM +#endif +#ifdef TFM_PPC32 + #ifdef TFM_ASM + #error TFM_ASM already defined! + #endif + #define TFM_ASM +#endif +#ifdef TFM_PPC64 + #ifdef TFM_ASM + #error TFM_ASM already defined! + #endif + #define TFM_ASM +#endif +#ifdef TFM_AVR32 + #ifdef TFM_ASM + #error TFM_ASM already defined! + #endif + #define TFM_ASM +#endif + +/* we want no asm? */ +#ifdef TFM_NO_ASM + #undef TFM_X86 + #undef TFM_X86_64 + #undef TFM_SSE2 + #undef TFM_ARM + #undef TFM_PPC32 + #undef TFM_PPC64 + #undef TFM_AVR32 + #undef TFM_ASM +#endif + +/* ECC helpers */ +#ifdef TFM_ECC192 + #ifdef FP_64BIT + #define TFM_MUL3 + #define TFM_SQR3 + #else + #define TFM_MUL6 + #define TFM_SQR6 + #endif +#endif + +#ifdef TFM_ECC224 + #ifdef FP_64BIT + #define TFM_MUL4 + #define TFM_SQR4 + #else + #define TFM_MUL7 + #define TFM_SQR7 + #endif +#endif + +#ifdef TFM_ECC256 + #ifdef FP_64BIT + #define TFM_MUL4 + #define TFM_SQR4 + #else + #define TFM_MUL8 + #define TFM_SQR8 + #endif +#endif + +#ifdef TFM_ECC384 + #ifdef FP_64BIT + #define TFM_MUL6 + #define TFM_SQR6 + #else + #define TFM_MUL12 + #define TFM_SQR12 + #endif +#endif + +#ifdef TFM_ECC521 + #ifdef FP_64BIT + #define TFM_MUL9 + #define TFM_SQR9 + #else + #define TFM_MUL17 + #define TFM_SQR17 + #endif +#endif + + +/* some default configurations. + */ +#if defined(FP_64BIT) + /* for GCC only on supported platforms */ +#ifndef CRYPT + typedef unsigned long ulong64; +#endif + typedef ulong64 fp_digit; + typedef unsigned long fp_word __attribute__ ((mode(TI))); +#else + /* this is to make porting into LibTomCrypt easier :-) */ +#ifndef CRYPT + #if defined(_MSC_VER) || defined(__BORLANDC__) + typedef unsigned __int64 ulong64; + typedef signed __int64 long64; + #else + typedef unsigned long long ulong64; + typedef signed long long long64; + #endif +#endif + typedef unsigned int fp_digit; + typedef ulong64 fp_word; +#endif + +/* # of digits this is */ +#define DIGIT_BIT (int)((CHAR_BIT) * sizeof(fp_digit)) + +/* Max size of any number in bits. Basically the largest size you will be + * multiplying should be half [or smaller] of FP_MAX_SIZE-four_digit + * + * It defaults to 4096-bits [allowing multiplications upto 2048x2048 bits ] + */ +#ifndef FP_MAX_BITS + #define FP_MAX_BITS 4096 +#endif +#define FP_MAX_SIZE (FP_MAX_BITS+(8*DIGIT_BIT)) + +/* will this lib work? */ +#if (CHAR_BIT & 7) + #error CHAR_BIT must be a multiple of eight. +#endif +#if FP_MAX_BITS % CHAR_BIT + #error FP_MAX_BITS must be a multiple of CHAR_BIT +#endif + +#define FP_MASK (fp_digit)(-1) +#define FP_SIZE (FP_MAX_SIZE/DIGIT_BIT) + +/* signs */ +#define FP_ZPOS 0 +#define FP_NEG 1 + +/* return codes */ +#define FP_OKAY 0 +#define FP_VAL 1 +#define FP_MEM 2 + +/* equalities */ +#define FP_LT -1 /* less than */ +#define FP_EQ 0 /* equal to */ +#define FP_GT 1 /* greater than */ + +/* replies */ +#define FP_YES 1 /* yes response */ +#define FP_NO 0 /* no response */ + +/* a FP type */ +typedef struct { + fp_digit dp[FP_SIZE]; + int used, + sign; +} fp_int; + +/* externally define this symbol to ignore the default settings, useful for changing the build from the make process */ +#ifndef TFM_ALREADY_SET + +/* do we want the large set of small multiplications ? + Enable these if you are going to be doing a lot of small (<= 16 digit) multiplications say in ECC + Or if you're on a 64-bit machine doing RSA as a 1024-bit integer == 16 digits ;-) + */ +/* need to refactor the function */ +/*#define TFM_SMALL_SET */ + +/* do we want huge code + Enable these if you are doing 20, 24, 28, 32, 48, 64 digit multiplications (useful for RSA) + Less important on 64-bit machines as 32 digits == 2048 bits + */ +#if 0 +#define TFM_MUL3 +#define TFM_MUL4 +#define TFM_MUL6 +#define TFM_MUL7 +#define TFM_MUL8 +#define TFM_MUL9 +#define TFM_MUL12 +#define TFM_MUL17 +#endif +#ifdef TFM_SMALL_SET +#define TFM_MUL20 +#define TFM_MUL24 +#define TFM_MUL28 +#define TFM_MUL32 +#if (FP_MAX_BITS >= 6144) && defined(FP_64BIT) + #define TFM_MUL48 +#endif +#if (FP_MAX_BITS >= 8192) && defined(FP_64BIT) + #define TFM_MUL64 +#endif +#endif + +#if 0 +#define TFM_SQR3 +#define TFM_SQR4 +#define TFM_SQR6 +#define TFM_SQR7 +#define TFM_SQR8 +#define TFM_SQR9 +#define TFM_SQR12 +#define TFM_SQR17 +#endif +#ifdef TFM_SMALL_SET +#define TFM_SQR20 +#define TFM_SQR24 +#define TFM_SQR28 +#define TFM_SQR32 +#define TFM_SQR48 +#define TFM_SQR64 +#endif + +/* do we want some overflow checks + Not required if you make sure your numbers are within range (e.g. by default a modulus for fp_exptmod() can only be upto 2048 bits long) + */ +/* #define TFM_CHECK */ + +/* Is the target a P4 Prescott + */ +/* #define TFM_PRESCOTT */ + +/* Do we want timing resistant fp_exptmod() ? + * This makes it slower but also timing invariant with respect to the exponent + */ +/* #define TFM_TIMING_RESISTANT */ + +#endif /* TFM_ALREADY_SET */ + +/* functions */ + +/* returns a TFM ident string useful for debugging... */ +/*const char *fp_ident(void);*/ + +/* initialize [or zero] an fp int */ +#define fp_init(a) (void)XMEMSET((a), 0, sizeof(fp_int)) +#define fp_zero(a) fp_init(a) + +/* zero/even/odd ? */ +#define fp_iszero(a) (((a)->used == 0) ? FP_YES : FP_NO) +#define fp_iseven(a) (((a)->used >= 0 && (((a)->dp[0] & 1) == 0)) ? FP_YES : FP_NO) +#define fp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? FP_YES : FP_NO) + +/* set to a small digit */ +void fp_set(fp_int *a, fp_digit b); + +/* copy from a to b */ +#define fp_copy(a, b) (void)(((a) != (b)) ? ((void)XMEMCPY((b), (a), sizeof(fp_int))) : (void)0) +#define fp_init_copy(a, b) fp_copy(b, a) + +/* clamp digits */ +#define fp_clamp(a) { while ((a)->used && (a)->dp[(a)->used-1] == 0) --((a)->used); (a)->sign = (a)->used ? (a)->sign : FP_ZPOS; } + +/* negate and absolute */ +#define fp_neg(a, b) { fp_copy(a, b); (b)->sign ^= 1; fp_clamp(b); } +#define fp_abs(a, b) { fp_copy(a, b); (b)->sign = 0; } + +/* right shift x digits */ +void fp_rshd(fp_int *a, int x); + +/* left shift x digits */ +void fp_lshd(fp_int *a, int x); + +/* signed comparison */ +int fp_cmp(fp_int *a, fp_int *b); + +/* unsigned comparison */ +int fp_cmp_mag(fp_int *a, fp_int *b); + +/* power of 2 operations */ +void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d); +void fp_mod_2d(fp_int *a, int b, fp_int *c); +void fp_mul_2d(fp_int *a, int b, fp_int *c); +void fp_2expt (fp_int *a, int b); +void fp_mul_2(fp_int *a, fp_int *c); +void fp_div_2(fp_int *a, fp_int *c); + +/* Counts the number of lsbs which are zero before the first zero bit */ +/*int fp_cnt_lsb(fp_int *a);*/ + +/* c = a + b */ +void fp_add(fp_int *a, fp_int *b, fp_int *c); + +/* c = a - b */ +void fp_sub(fp_int *a, fp_int *b, fp_int *c); + +/* c = a * b */ +void fp_mul(fp_int *a, fp_int *b, fp_int *c); + +/* b = a*a */ +void fp_sqr(fp_int *a, fp_int *b); + +/* a/b => cb + d == a */ +int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d); + +/* c = a mod b, 0 <= c < b */ +int fp_mod(fp_int *a, fp_int *b, fp_int *c); + +/* compare against a single digit */ +int fp_cmp_d(fp_int *a, fp_digit b); + +/* c = a + b */ +void fp_add_d(fp_int *a, fp_digit b, fp_int *c); + +/* c = a - b */ +void fp_sub_d(fp_int *a, fp_digit b, fp_int *c); + +/* c = a * b */ +void fp_mul_d(fp_int *a, fp_digit b, fp_int *c); + +/* a/b => cb + d == a */ +/*int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d);*/ + +/* c = a mod b, 0 <= c < b */ +/*int fp_mod_d(fp_int *a, fp_digit b, fp_digit *c);*/ + +/* ---> number theory <--- */ +/* d = a + b (mod c) */ +/*int fp_addmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);*/ + +/* d = a - b (mod c) */ +/*int fp_submod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);*/ + +/* d = a * b (mod c) */ +int fp_mulmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d); + +/* c = a * a (mod b) */ +int fp_sqrmod(fp_int *a, fp_int *b, fp_int *c); + +/* c = 1/a (mod b) */ +int fp_invmod(fp_int *a, fp_int *b, fp_int *c); + +/* c = (a, b) */ +/*void fp_gcd(fp_int *a, fp_int *b, fp_int *c);*/ + +/* c = [a, b] */ +/*void fp_lcm(fp_int *a, fp_int *b, fp_int *c);*/ + +/* setups the montgomery reduction */ +int fp_montgomery_setup(fp_int *a, fp_digit *mp); + +/* computes a = B**n mod b without division or multiplication useful for + * normalizing numbers in a Montgomery system. + */ +void fp_montgomery_calc_normalization(fp_int *a, fp_int *b); + +/* computes x/R == x (mod N) via Montgomery Reduction */ +void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp); + +/* d = a**b (mod c) */ +int fp_exptmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d); + +/* primality stuff */ + +/* perform a Miller-Rabin test of a to the base b and store result in "result" */ +/*void fp_prime_miller_rabin (fp_int * a, fp_int * b, int *result);*/ + +/* 256 trial divisions + 8 Miller-Rabins, returns FP_YES if probable prime */ +/*int fp_isprime(fp_int *a);*/ + +/* Primality generation flags */ +/*#define TFM_PRIME_BBS 0x0001 */ /* BBS style prime */ +/*#define TFM_PRIME_SAFE 0x0002 */ /* Safe prime (p-1)/2 == prime */ +/*#define TFM_PRIME_2MSB_OFF 0x0004 */ /* force 2nd MSB to 0 */ +/*#define TFM_PRIME_2MSB_ON 0x0008 */ /* force 2nd MSB to 1 */ + +/* callback for fp_prime_random, should fill dst with random bytes and return how many read [upto len] */ +/*typedef int tfm_prime_callback(unsigned char *dst, int len, void *dat);*/ + +/*#define fp_prime_random(a, t, size, bbs, cb, dat) fp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?TFM_PRIME_BBS:0, cb, dat)*/ + +/*int fp_prime_random_ex(fp_int *a, int t, int size, int flags, tfm_prime_callback cb, void *dat);*/ + +/* radix conersions */ +int fp_count_bits(fp_int *a); + +int fp_unsigned_bin_size(fp_int *a); +void fp_read_unsigned_bin(fp_int *a, unsigned char *b, int c); +void fp_to_unsigned_bin(fp_int *a, unsigned char *b); + +/*int fp_signed_bin_size(fp_int *a);*/ +/*void fp_read_signed_bin(fp_int *a, unsigned char *b, int c);*/ +/*void fp_to_signed_bin(fp_int *a, unsigned char *b);*/ + +/*int fp_read_radix(fp_int *a, char *str, int radix);*/ +/*int fp_toradix(fp_int *a, char *str, int radix);*/ +/*int fp_toradix_n(fp_int * a, char *str, int radix, int maxlen);*/ + + +/* VARIOUS LOW LEVEL STUFFS */ +void s_fp_add(fp_int *a, fp_int *b, fp_int *c); +void s_fp_sub(fp_int *a, fp_int *b, fp_int *c); +void fp_reverse(unsigned char *s, int len); + +void fp_mul_comba(fp_int *A, fp_int *B, fp_int *C); + +#ifdef TFM_SMALL_SET +void fp_mul_comba_small(fp_int *A, fp_int *B, fp_int *C); +#endif + +#ifdef TFM_MUL3 +void fp_mul_comba3(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL4 +void fp_mul_comba4(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL6 +void fp_mul_comba6(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL7 +void fp_mul_comba7(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL8 +void fp_mul_comba8(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL9 +void fp_mul_comba9(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL12 +void fp_mul_comba12(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL17 +void fp_mul_comba17(fp_int *A, fp_int *B, fp_int *C); +#endif + +#ifdef TFM_MUL20 +void fp_mul_comba20(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL24 +void fp_mul_comba24(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL28 +void fp_mul_comba28(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL32 +void fp_mul_comba32(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL48 +void fp_mul_comba48(fp_int *A, fp_int *B, fp_int *C); +#endif +#ifdef TFM_MUL64 +void fp_mul_comba64(fp_int *A, fp_int *B, fp_int *C); +#endif + +void fp_sqr_comba(fp_int *A, fp_int *B); + +#ifdef TFM_SMALL_SET +void fp_sqr_comba_small(fp_int *A, fp_int *B); +#endif + +#ifdef TFM_SQR3 +void fp_sqr_comba3(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR4 +void fp_sqr_comba4(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR6 +void fp_sqr_comba6(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR7 +void fp_sqr_comba7(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR8 +void fp_sqr_comba8(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR9 +void fp_sqr_comba9(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR12 +void fp_sqr_comba12(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR17 +void fp_sqr_comba17(fp_int *A, fp_int *B); +#endif + +#ifdef TFM_SQR20 +void fp_sqr_comba20(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR24 +void fp_sqr_comba24(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR28 +void fp_sqr_comba28(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR32 +void fp_sqr_comba32(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR48 +void fp_sqr_comba48(fp_int *A, fp_int *B); +#endif +#ifdef TFM_SQR64 +void fp_sqr_comba64(fp_int *A, fp_int *B); +#endif +/*extern const char *fp_s_rmap;*/ + + +/** + * Used by CyaSSL + */ + +/* Types */ + typedef fp_digit mp_digit; + typedef fp_word mp_word; + typedef fp_int mp_int; + +/* Constants */ + #define MP_LT FP_LT /* less than */ + #define MP_EQ FP_EQ /* equal to */ + #define MP_GT FP_GT /* greater than */ + #define MP_OKAY FP_OKAY /* ok result */ + #define MP_NO FP_NO /* yes/no result */ + #define MP_YES FP_YES /* yes/no result */ + +/* Prototypes */ +int mp_init (mp_int * a); +void mp_clear (mp_int * a); +int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e, mp_int* f); + +int mp_add (mp_int * a, mp_int * b, mp_int * c); +int mp_sub (mp_int * a, mp_int * b, mp_int * c); +int mp_add_d (mp_int * a, mp_digit b, mp_int * c); + +int mp_mul (mp_int * a, mp_int * b, mp_int * c); +int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d); +int mp_mod(mp_int *a, mp_int *b, mp_int *c); +int mp_invmod(mp_int *a, mp_int *b, mp_int *c); +int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y); + +int mp_cmp(mp_int *a, mp_int *b); +int mp_cmp_d(mp_int *a, mp_digit b); + +int mp_unsigned_bin_size(mp_int * a); +int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c); +int mp_to_unsigned_bin (mp_int * a, unsigned char *b); + +int mp_sub_d(fp_int *a, fp_digit b, fp_int *c); +int mp_copy(fp_int* a, fp_int* b); +int mp_isodd(mp_int* a); +int mp_iszero(mp_int* a); +int mp_count_bits(mp_int *a); +int mp_set_int(fp_int *a, fp_digit b); + +#ifdef HAVE_ECC + int mp_read_radix(mp_int* a, const char* str, int radix); + int mp_set(fp_int *a, fp_digit b); + int mp_sqr(fp_int *A, fp_int *B); + int mp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp); + int mp_montgomery_setup(fp_int *a, fp_digit *rho); + int mp_div_2(fp_int * a, fp_int * b); + int mp_init_copy(fp_int * a, fp_int * b); +#endif + +#if defined(HAVE_ECC) || defined(CYASSL_KEY_GEN) + int mp_sqrmod(mp_int* a, mp_int* b, mp_int* c); + int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); +#endif + +#ifdef CYASSL_KEY_GEN +int mp_gcd(fp_int *a, fp_int *b, fp_int *c); +int mp_lcm(fp_int *a, fp_int *b, fp_int *c); +int mp_prime_is_prime(mp_int* a, int t, int* result); +#endif /* CYASSL_KEY_GEN */ + +CYASSL_API word32 CheckRunTimeFastMath(void); + +/* If user uses RSA, DH, DSA, or ECC math lib directly then fast math FP_SIZE + must match, return 1 if a match otherwise 0 */ +#define CheckFastMathSettings() (FP_SIZE == CheckRunTimeFastMath()) +#ifdef __cplusplus + } +#endif + + +#endif /* CTAO_CRYPT_TFM_H */