Volledig besturingssysteem voor de myoelectrische prothese arm van mijn bachelor opdracht
Dependencies: mbed QEI MODSERIAL FastPWM biquadFilter
main.cpp
- Committer:
- aschut
- Date:
- 2019-04-11
- Revision:
- 6:464d2fdfd7de
- Parent:
- 5:ef77da99d0d1
- Child:
- 7:d7aafc5b9efc
- Child:
- 8:7fd9ac522ea9
File content as of revision 6:464d2fdfd7de:
//Voor het toevoegen van een button: #include "mbed.h" #include "MODSERIAL.h" #include "QEI.h" #include "BiQuad.h" #include "FastPWM.h" // Algemeen DigitalIn button3(SW3); DigitalIn button2(SW2); AnalogIn But2(A5); AnalogIn But1(A3); DigitalOut led1(LED_GREEN); DigitalOut led2(LED_RED); DigitalOut led3(LED_BLUE); float counts = 0; MODSERIAL pc(USBTX, USBRX); Timer t; Timer t2; //Motoren DigitalOut direction1(D4); FastPWM pwmpin1(D5); FastPWM pwmpin2(D6); DigitalOut direction2(D7); volatile float pwm1; volatile float pwm2; //Encoder QEI encoder1 (D15, D14, NC, 1200, QEI::X4_ENCODING); QEI encoder2 (D1, D0, NC, 4800, QEI::X4_ENCODING); double Pulses1; double motor_position1; double Pulses2; double motor_position2; double error1; double u1; //Pot meter AnalogIn pot(A1); AnalogIn pot0(A0); float Pot2; float Pot1; //Ticker Ticker Pwm; Ticker PotRead; Ticker Kdc; //Servo Ticker ServoTick; DigitalOut myservo1(D8); //Duim DigitalOut myservo2(D9); //Pink tot Middel vinger DigitalOut myservo3(D10); //wijsvinger float Periodlength = 0.02; // de MG996R heeft een PWM periode van 20 ms float servo_position1; // in percentage van 0 tot 1, 0 is met de klok mee, 1 is tegen de klok in. float servo_position2; float servo_position3; // Vinger posities float Duim_krom = 0.05; float Duim_recht = 0.85; float MWP_krom = 0.06; float MWP_recht = 0.89; float Wijsvinger_krom = 0.15; float Wijsvinger_recht = 0.93; // EMG float EMG1; // Rotatie float EMG2; // Elleboog float EMG3; // Hand float EMG4; // Reverse float Input1; // Voor zonder EMG float Input2; int count = 0; //Kinematica double stap1; double stap2; double KPot; float ElbowReference; float Ellebooghoek1; float Ellebooghoek2; float Ellebooghoek3; float Ellebooghoek4; float PolsReference; float Polshoek1; float Polshoek2; float Polshoek3; float Polshoek4; float Hoeknieuw1; float Hoeknieuw2; //Limiet in graden float lowerlim1 = -900; float upperlim1 = 900; float lowerlim2 = 0; float upperlim2 = 1500; // VARIABLES PID CONTROLLER double Kp1 = 12.5; double Ki1 = 0; double Kd1 = 1; double Kp2 = 12; // Zonder arm: 6,0,1, met rotatie: 10, 0, 1 double Ki2 = 0; double Kd2 = 1; double Ts = 0.0005; // Sample time in seconds // Functies Kinematica float Kinematics1(float EMG1) { if (EMG1 > 0.45f) { stap1 = EMG1*450*Ts; Hoeknieuw1 = PolsReference + stap1; return Hoeknieuw1; } else if (EMG1 < -0.45f) { stap1 = EMG1*450*Ts; Hoeknieuw1 = PolsReference + stap1; return Hoeknieuw1; } else { return PolsReference; } } float Kinematics2(float EMG2) { if (EMG2 > 0.45f) { stap2 = EMG2*300*Ts; Hoeknieuw2 = ElbowReference + stap2; return Hoeknieuw2; } else if (EMG2 < -0.45f) { stap2 = EMG2*300*Ts; Hoeknieuw2 = ElbowReference + stap2; return Hoeknieuw2; } else { return ElbowReference; } } float Limits1(float Polshoek2) { if (Polshoek2 <= upperlim1 && Polshoek2 >= lowerlim1) { //Binnen de limieten Polshoek3 = Polshoek2; } else { if (Polshoek2 >= upperlim1) { //Boven de limiet Polshoek3 = upperlim1; } else { //Onder de limiet Polshoek3 = lowerlim1; } } return Polshoek3; } float Limits2(float Ellebooghoek2) { if (Ellebooghoek2 <= upperlim2 && Ellebooghoek2 >= lowerlim2) { //Binnen de limieten Ellebooghoek3 = Ellebooghoek2; } else { if (Ellebooghoek2 >= upperlim2) { //Boven de limiet Ellebooghoek3 = upperlim2; } else { //Onder de limiet Ellebooghoek3 = lowerlim2; } } return Ellebooghoek3; } // PID Controller double PID_controller1(double error1) { static double error1_integral = 0; static double error1_prev = error1; // initialization with this value only done once! static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); //(BIQUAD_FILTER_TYPE type, T dbGain, T freq, T srate, T bandwidth); // Proportional part: double u_k1 = Kp1 * error1; // Integral part error1_integral = error1_integral + error1 * Ts; double u_i1 = Ki1* error1_integral; // Derivative part double error1_derivative = (error1 - error1_prev)/Ts; double filtered_error1_derivative = LowPassFilter.step(error1_derivative); double u_d1 = Kd1 * filtered_error1_derivative; error1_prev = error1; // Sum all parts and return it return u_k1 + u_i1 + u_d1; } double PID_controller2(double error2) { static double error2_integral = 0; static double error2_prev = error2; // initialization with this value only done once! static BiQuad LowPassFilter(0.0640, 0.1279, 0.0640, -1.1683, 0.4241); //(BIQUAD_FILTER_TYPE type, T dbGain, T freq, T srate, T bandwidth); // Proportional part: double u_k2 = Kp2 * error2; // Integral part error2_integral = error2_integral + error2 * Ts; double u_i2 = Ki2 * error2_integral; // Derivative part double error2_derivative = (error2 - error2_prev)/Ts; double filtered_error2_derivative = LowPassFilter.step(error2_derivative); double u_d2 = Kd2 * filtered_error2_derivative; error2_prev = error2; // Sum all parts and return it return u_k2 + u_i2 + u_d2; } // Functies Motor void moter1_control(double u1) { direction1= u1 > 0.0f; //positief = CW if (fabs(u1)> 0.7f) { u1 = 0.7f; } else { u1= u1; } pwmpin1.write(fabs(u1)) ; //pwmduty cycle canonlybepositive, floatingpoint absolute value } void moter2_control(double u2) { direction2= u2 < 0.0f; //positief = CW if (fabs(u2)> 0.99f) { u2 = 0.99f; } else { u2= u2; } pwmpin2.write(fabs(u2)) ; //pwmduty cycle canonlybepositive, floatingpoint absolute value } void PwmMotor(void) { //Continues Read Pot2 = pot.read(); Pot1 = pot0.read(); pwm2 =(Pot2*2)-1; //scaling naar -1 tot 1 pwm1 =(Pot1*2)-1; Input1 = pwm1; Input2 = pwm2; float Polshoek1 = Kinematics1(Input1); float Polshoek4 = Limits1(Polshoek1); PolsReference = Polshoek4; // Reference hoek berekenen, in graden float Ellebooghoek1 = Kinematics2(Input2); float Ellebooghoek4 = Limits2(Ellebooghoek1); ElbowReference = Ellebooghoek4; // Positie motor berekenen, in graden Pulses1 = encoder1.getPulses(); motor_position1 = -(Pulses1/1200)*360; Pulses2 = encoder2.getPulses(); motor_position2 = -(Pulses2/4800)*360; double error1 = PolsReference - motor_position1; double u1 = PID_controller1(error1); moter1_control(u1); double error2 = ElbowReference - motor_position2; double u2 = PID_controller2(error2); moter2_control(u2); } void MotorOn(void) { pwmpin1 = 0; pwmpin2 = 0; Pwm.attach (PwmMotor, Ts); } //Servo functies void servowait1(void) { double Pulslength1 = 0.0005 + (servo_position1 * 0.002); //in seconden, waarde tussen de 500 en de 2500 microseconden, als de waarde omhoog gaat beweegt de servo tegen de klok in myservo1 = true; wait(Pulslength1); myservo1 = false; } void servowait2(void) { double Pulslength2 = 0.0005 + (servo_position2 * 0.002); //in seconden myservo2 = true; wait(Pulslength2); myservo2 = false; } void servowait3(void) { double Pulslength3 = 0.0005 + (servo_position3 * 0.002); //in seconden myservo3 = true; wait(Pulslength3); myservo3 = false; } void ServoPeriod() { servowait1(); servowait2(); servowait3(); } void ContinuousReader(void) { Pot2 = pot.read(); Pot1 = pot0.read(); pwm2 =(Pot2*2)-1; //scaling naar -1 tot 1 pwm1 =(Pot1*2)-1; } // StateMachine enum states {MOTORS_OFF,CALIBRATION,HOMING1,HOMING2,DEMO,MOVEMENT,FREEZE}; int f = 1; states currentState = MOTORS_OFF; bool stateChanged = true; // Make sure the initialization of first state is executed void ProcessStateMachine(void) { switch (currentState) { case MOTORS_OFF: // Actions if (stateChanged) { // state initialization: rood led1 = 1; led2 = 0; led3 = 1; wait (1); stateChanged = false; } // State transition logic: Als button 1 word ingedrukt --> calibratie, anders motor uithouden if (!button3) { currentState = CALIBRATION ; stateChanged = true; } else { currentState = MOTORS_OFF; stateChanged = true; } break; case CALIBRATION: // Actions if (stateChanged) { // state initialization: oranje led1 = 0; led2 = 0; led3 = 1; wait(1); stateChanged = false; } // State transition logic: automatisch terug naar motors off. currentState = HOMING1; stateChanged = true; break; case HOMING1: // Actions if (stateChanged) { // state initialization: green t.start(); led1 = 0; led2 = 1; led3 = 1; if (!But1) { led1 = 1; float H1 = 0.99f; moter1_control(H1); wait(0.001f); } else if (!But2) { led1 = 1; float H1 = -0.99f; moter1_control(H1); wait(0.001f); } encoder1.reset(); motor_position1 = 0; pwmpin1 = 0; pwmpin2 = 0; ; stateChanged = false; } // State transition logic: naar HOMING (button2), na 5 min naar MOTORS_OFF if (!button3) { currentState = HOMING2 ; stateChanged = true; wait(1); } else if (t>300) { t.stop(); t.reset(); currentState = MOTORS_OFF ; stateChanged = true; } else { currentState = HOMING1 ; stateChanged = true; } break; case HOMING2: // Actions if (stateChanged) { // state initialization: white t.start(); led1 = 0; led2 = 0; led3 = 0; if (!But1) { led1 = 1; float H2 = 0.98f; moter2_control(H2); wait(0.001f); } else if (!But2) { led1 = 1; float H2 = -0.98f; moter2_control(H2); wait(0.001f); } encoder2.reset(); motor_position2 = 0; pwmpin1 = 0; pwmpin2 = 0; ; stateChanged = false; } // State transition logic: naar DEMO (button2), naar MOVEMENT(button3) if (!button2) { currentState = DEMO; stateChanged = true; } else if (!button3) { currentState = MOVEMENT ; stateChanged = true; } else if (t>300) { t.stop(); t.reset(); currentState = MOTORS_OFF ; stateChanged = true; } else { currentState = HOMING2 ; stateChanged = true; } break; case DEMO: // Actions if (stateChanged) { // state initialization: light blue led1 = 0; led2 = 1; led3 = 0; servo_position1 = 0.5; servo_position2 = 0.5; servo_position3 = 0.5; ServoTick.attach(&ServoPeriod, Periodlength); wait(1.5 ); servo_position1 = 0.9; servo_position2 = 0.9; servo_position3 = 0.9; wait(1.5); servo_position1 = 0.1; servo_position2 = 0.1; servo_position3 = 0.1; wait(1); ServoTick.detach(); wait (1); stateChanged = false; } // State transition logic: automatisch terug naar HOMING currentState = HOMING2; stateChanged = true; break; case MOVEMENT: // Actions if (stateChanged) { // state initialization: purple t.start(); // na 5 minuten terug naar Homing led1 = 1; led2 = 0; led3 = 0; // Tickers aan if (counts == 0) { pwmpin1 = 0; pwmpin2 = 0; Input1 = pwm1; Input2 = pwm2; Pwm.attach (PwmMotor, Ts); servo_position1 = Duim_krom; servo_position2 = MWP_krom; servo_position3 = Wijsvinger_krom; ServoTick.attach(&ServoPeriod, Periodlength); counts++; wait(1); } // Servo positie if (!But1) { servo_position1 = Duim_krom; servo_position2 = MWP_krom; servo_position3 = Wijsvinger_krom; led1 = !led1; } if (!But2) { servo_position1 = Duim_recht; servo_position2 = MWP_recht; servo_position3 = Wijsvinger_recht; led1 = !led1; } /* // printen if(count==500) { float tmp = t2.read(); pc.printf(" Elleboog positie: %f reference: %f, rotatie positie: %f reference: \r\n", motor_position2, ElbowReference, motor_position1, PolsReference); count = 0; } count++; */ stateChanged = false; } // State transition logic: naar FREEZE (button2), naar MOTORS_OFF(button3) anders naar MOVEMENT if (!button2) { currentState = FREEZE; stateChanged = true; } else if (!button3) { Pwm.detach (); ServoTick.detach(); pwmpin2 = 0; pwmpin1 = 0; counts = 0; currentState = MOTORS_OFF ; stateChanged = true; } else if (t>300) { t.stop(); t.reset(); Pwm.detach (); ServoTick.detach(); counts = 0; currentState = HOMING1 ; stateChanged = true; } else { currentState = MOVEMENT ; stateChanged = true; } break; case FREEZE: // Actions if (stateChanged) { // state initialization: blue led1 = 1; led2 = 1; led3 = 0; wait (1); stateChanged = false; } // State transition logic: automatisch terug naar MOVEMENT. currentState = MOVEMENT; stateChanged = true; break; } } int main() { t2.start(); int counter = 0; pwmpin1.period_us(60); //PotRead.attach(ContinuousReader,Ts); pc.baud(115200); while(true) { led1 = 1; led2 =1; led3 =1; /* if(counter==10) { float tmp = t2.read(); printf("%f,%f,%f,%f\n\r",tmp,motor_position2,ElbowReference,Pulses2); counter = 0; } counter++; */ ProcessStateMachine(); wait(0.001); } }