Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed FastIO FastPWM USBDevice
TLC5940/TLC5940.h@39:b3815a1c3802, 2016-01-11 (annotated)
- Committer:
- mjr
- Date:
- Mon Jan 11 21:08:36 2016 +0000
- Revision:
- 39:b3815a1c3802
- Parent:
- 38:091e511ce8a0
- Child:
- 40:cc0d9814522b
USB fixes; accelerometer auto un-sticking with watchdog timer.
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
mjr | 26:cb71c4af2912 | 1 | // Pinscape Controller TLC5940 interface |
mjr | 26:cb71c4af2912 | 2 | // |
mjr | 26:cb71c4af2912 | 3 | // Based on Spencer Davis's mbed TLC5940 library. Adapted for the |
mjr | 26:cb71c4af2912 | 4 | // KL25Z, and simplified to just the functions needed for this |
mjr | 26:cb71c4af2912 | 5 | // application. In particular, this version doesn't include support |
mjr | 26:cb71c4af2912 | 6 | // for dot correction programming or status input. This version also |
mjr | 26:cb71c4af2912 | 7 | // uses a different approach for sending the grayscale data updates, |
mjr | 26:cb71c4af2912 | 8 | // sending updates during the blanking interval rather than overlapping |
mjr | 26:cb71c4af2912 | 9 | // them with the PWM cycle. This results in very slightly longer |
mjr | 26:cb71c4af2912 | 10 | // blanking intervals when updates are pending, effectively reducing |
mjr | 26:cb71c4af2912 | 11 | // the PWM "on" duty cycle (and thus the output brightness) by about |
mjr | 26:cb71c4af2912 | 12 | // 0.3%. This shouldn't be perceptible to users, so it's a small |
mjr | 26:cb71c4af2912 | 13 | // trade-off for the advantage gained, which is much better signal |
mjr | 26:cb71c4af2912 | 14 | // stability when using multiple TLC5940s daisy-chained together. |
mjr | 26:cb71c4af2912 | 15 | // I saw a lot of instability when using the overlapped approach, |
mjr | 26:cb71c4af2912 | 16 | // which seems to be eliminated entirely when sending updates during |
mjr | 26:cb71c4af2912 | 17 | // the blanking interval. |
mjr | 26:cb71c4af2912 | 18 | |
mjr | 26:cb71c4af2912 | 19 | |
mjr | 26:cb71c4af2912 | 20 | #ifndef TLC5940_H |
mjr | 26:cb71c4af2912 | 21 | #define TLC5940_H |
mjr | 26:cb71c4af2912 | 22 | |
mjr | 38:091e511ce8a0 | 23 | // Data Transmission Mode. |
mjr | 38:091e511ce8a0 | 24 | // |
mjr | 38:091e511ce8a0 | 25 | // NOTE! This section contains a possible workaround to try if you're |
mjr | 38:091e511ce8a0 | 26 | // having data signal stability problems with your TLC5940 chips. If |
mjr | 38:091e511ce8a0 | 27 | // your chips are working properly, you can ignore this part! |
mjr | 33:d832bcab089e | 28 | // |
mjr | 38:091e511ce8a0 | 29 | // The software has two options for sending data updates to the chips: |
mjr | 38:091e511ce8a0 | 30 | // |
mjr | 38:091e511ce8a0 | 31 | // Mode 0: Send data *during* the grayscale cycle. This is the way the |
mjr | 38:091e511ce8a0 | 32 | // chips are designed to be used. While the grayscale clock is running, |
mjr | 38:091e511ce8a0 | 33 | // we send data for the *next* cycle, then latch the updated data to the |
mjr | 38:091e511ce8a0 | 34 | // output registers during the blanking interval at the end of the cycle. |
mjr | 33:d832bcab089e | 35 | // |
mjr | 38:091e511ce8a0 | 36 | // Mode 1: Send data *between* grayscale cycles. In this mode, we send |
mjr | 38:091e511ce8a0 | 37 | // each complete update during a blanking period, then latch the update |
mjr | 38:091e511ce8a0 | 38 | // and start the next grayscale cycle. This isn't the way the chips were |
mjr | 38:091e511ce8a0 | 39 | // intended to be used, but it works. The disadvantage is that it requires |
mjr | 38:091e511ce8a0 | 40 | // the blanking interval to be extended to be long enough for the full |
mjr | 38:091e511ce8a0 | 41 | // data update (192 bits * the number of chips in the chain). Since the |
mjr | 38:091e511ce8a0 | 42 | // outputs are turned off for the entire blanking period, this reduces |
mjr | 38:091e511ce8a0 | 43 | // the overall brightness/intensity of the outputs by reducing the duty |
mjr | 38:091e511ce8a0 | 44 | // cycle. The TLC5940 chips can't achieve 100% duty cycle to begin with, |
mjr | 38:091e511ce8a0 | 45 | // since they require a certain minimum time in the blanking interval |
mjr | 38:091e511ce8a0 | 46 | // between grayscale cycles; however, the minimum is so short that the |
mjr | 38:091e511ce8a0 | 47 | // duty cycle is close to 100%. With the full data transmission stuffed |
mjr | 38:091e511ce8a0 | 48 | // into the blanking interval, we reduce the duty cycle further below |
mjr | 38:091e511ce8a0 | 49 | // 100%. With four chips in the chain, a 28 MHz data clock, and a |
mjr | 38:091e511ce8a0 | 50 | // 500 kHz grayscale clock, the reduction is about 0.3%. |
mjr | 33:d832bcab089e | 51 | // |
mjr | 38:091e511ce8a0 | 52 | // By default, we use Mode 0, because that's the timing model specified |
mjr | 38:091e511ce8a0 | 53 | // by the manufacturer, and empirically it works well with the Pinscape |
mjr | 38:091e511ce8a0 | 54 | // Expansion boards. |
mjr | 38:091e511ce8a0 | 55 | // |
mjr | 38:091e511ce8a0 | 56 | // So what's the point of Mode 1? In early testing, with a breadboard |
mjr | 38:091e511ce8a0 | 57 | // setup, I saw some problems with data signal stability, which manifested |
mjr | 38:091e511ce8a0 | 58 | // as sporadic flickering in the outputs. Switching to Mode 1 improved |
mjr | 38:091e511ce8a0 | 59 | // the signal stability considerably. I'm therefore leaving this code |
mjr | 38:091e511ce8a0 | 60 | // available as an option in case anyone runs into similar signal problems |
mjr | 38:091e511ce8a0 | 61 | // and wants to try the alternative mode as a workaround. |
mjr | 38:091e511ce8a0 | 62 | // |
mjr | 38:091e511ce8a0 | 63 | #define DATA_UPDATE_INSIDE_BLANKING 0 |
mjr | 33:d832bcab089e | 64 | |
mjr | 26:cb71c4af2912 | 65 | #include "mbed.h" |
mjr | 26:cb71c4af2912 | 66 | #include "FastPWM.h" |
mjr | 30:6e9902f06f48 | 67 | #include "SimpleDMA.h" |
mjr | 26:cb71c4af2912 | 68 | |
mjr | 26:cb71c4af2912 | 69 | /** |
mjr | 26:cb71c4af2912 | 70 | * SPI speed used by the mbed to communicate with the TLC5940 |
mjr | 26:cb71c4af2912 | 71 | * The TLC5940 supports up to 30Mhz. It's best to keep this as |
mjr | 33:d832bcab089e | 72 | * high as possible, since a higher SPI speed yields a faster |
mjr | 33:d832bcab089e | 73 | * grayscale data update. However, I've seen some slight |
mjr | 33:d832bcab089e | 74 | * instability in the signal in my breadboard setup using the |
mjr | 33:d832bcab089e | 75 | * full 30MHz, so I've reduced this slightly, which seems to |
mjr | 33:d832bcab089e | 76 | * yield a solid signal. The limit will vary according to how |
mjr | 33:d832bcab089e | 77 | * clean the signal path is to the chips; you can probably crank |
mjr | 33:d832bcab089e | 78 | * this up to full speed if you have a well-designed PCB, good |
mjr | 33:d832bcab089e | 79 | * decoupling capacitors near the 5940 VCC/GND pins, and short |
mjr | 33:d832bcab089e | 80 | * wires between the KL25Z and the PCB. A short, clean path to |
mjr | 33:d832bcab089e | 81 | * KL25Z ground seems especially important. |
mjr | 26:cb71c4af2912 | 82 | * |
mjr | 26:cb71c4af2912 | 83 | * The SPI clock must be fast enough that the data transmission |
mjr | 26:cb71c4af2912 | 84 | * time for a full update is comfortably less than the blanking |
mjr | 26:cb71c4af2912 | 85 | * cycle time. The grayscale refresh requires 192 bits per TLC5940 |
mjr | 26:cb71c4af2912 | 86 | * in the daisy chain, and each bit takes one SPI clock to send. |
mjr | 26:cb71c4af2912 | 87 | * Our reference setup in the Pinscape controller allows for up to |
mjr | 26:cb71c4af2912 | 88 | * 4 TLC5940s, so a full refresh cycle on a fully populated system |
mjr | 26:cb71c4af2912 | 89 | * would be 768 SPI clocks. The blanking cycle is 4096 GSCLK cycles. |
mjr | 26:cb71c4af2912 | 90 | * |
mjr | 26:cb71c4af2912 | 91 | * t(blank) = 4096 * 1/GSCLK_SPEED |
mjr | 26:cb71c4af2912 | 92 | * t(refresh) = 768 * 1/SPI_SPEED |
mjr | 26:cb71c4af2912 | 93 | * Therefore: SPI_SPEED must be > 768/4096 * GSCLK_SPEED |
mjr | 26:cb71c4af2912 | 94 | * |
mjr | 26:cb71c4af2912 | 95 | * Since the SPI speed can be so high, and since we want to keep |
mjr | 26:cb71c4af2912 | 96 | * the GSCLK speed relatively low, the constraint above simply |
mjr | 26:cb71c4af2912 | 97 | * isn't a factor. E.g., at SPI=30MHz and GSCLK=500kHz, |
mjr | 26:cb71c4af2912 | 98 | * t(blank) is 8192us and t(refresh) is 25us. |
mjr | 26:cb71c4af2912 | 99 | */ |
mjr | 38:091e511ce8a0 | 100 | #define SPI_SPEED 28000000 |
mjr | 26:cb71c4af2912 | 101 | |
mjr | 26:cb71c4af2912 | 102 | /** |
mjr | 26:cb71c4af2912 | 103 | * The rate at which the GSCLK pin is pulsed. This also controls |
mjr | 26:cb71c4af2912 | 104 | * how often the reset function is called. The reset function call |
mjr | 38:091e511ce8a0 | 105 | * interval is (1/GSCLK_SPEED) * 4096. The maximum reliable rate is |
mjr | 26:cb71c4af2912 | 106 | * around 32Mhz. It's best to keep this rate as low as possible: |
mjr | 26:cb71c4af2912 | 107 | * the higher the rate, the higher the refresh() call frequency, |
mjr | 26:cb71c4af2912 | 108 | * so the higher the CPU load. |
mjr | 26:cb71c4af2912 | 109 | * |
mjr | 38:091e511ce8a0 | 110 | * The lower bound depends on the application. For driving LEDs, |
mjr | 38:091e511ce8a0 | 111 | * the limiting factor is that lower rates will increase visible flicker. |
mjr | 38:091e511ce8a0 | 112 | * A GSCLK speed of 200 kHz is about as low as you can go with LEDs |
mjr | 38:091e511ce8a0 | 113 | * without excessive flicker. That equals about 48 full grayscale |
mjr | 38:091e511ce8a0 | 114 | * cycles per second. That might seem perfectly good in that it's |
mjr | 38:091e511ce8a0 | 115 | * about the same as the standard 50Hz A/C cycle rate in many countries, |
mjr | 38:091e511ce8a0 | 116 | * but the 50Hz rate was chosen to minimize visible flicker in |
mjr | 38:091e511ce8a0 | 117 | * incandescent lamps, not LEDs. LEDs need a higher rate because they |
mjr | 38:091e511ce8a0 | 118 | * don't have thermal inertia as incandescents do. The default we use |
mjr | 38:091e511ce8a0 | 119 | * here is 500 kHz = 122 full grayscale cycles per second. That seems |
mjr | 38:091e511ce8a0 | 120 | * to produce excellent visual results. Higher rates would probably |
mjr | 38:091e511ce8a0 | 121 | * produce diminishing returns given that they also increase CPU load. |
mjr | 26:cb71c4af2912 | 122 | */ |
mjr | 26:cb71c4af2912 | 123 | #define GSCLK_SPEED 500000 |
mjr | 26:cb71c4af2912 | 124 | |
mjr | 26:cb71c4af2912 | 125 | /** |
mjr | 26:cb71c4af2912 | 126 | * This class controls a TLC5940 PWM driver IC. |
mjr | 26:cb71c4af2912 | 127 | * |
mjr | 26:cb71c4af2912 | 128 | * Using the TLC5940 class to control an LED: |
mjr | 26:cb71c4af2912 | 129 | * @code |
mjr | 26:cb71c4af2912 | 130 | * #include "mbed.h" |
mjr | 26:cb71c4af2912 | 131 | * #include "TLC5940.h" |
mjr | 26:cb71c4af2912 | 132 | * |
mjr | 26:cb71c4af2912 | 133 | * // Create the TLC5940 instance |
mjr | 26:cb71c4af2912 | 134 | * TLC5940 tlc(p7, p5, p21, p9, p10, p11, p12, 1); |
mjr | 26:cb71c4af2912 | 135 | * |
mjr | 26:cb71c4af2912 | 136 | * int main() |
mjr | 26:cb71c4af2912 | 137 | * { |
mjr | 26:cb71c4af2912 | 138 | * // Enable the first LED |
mjr | 26:cb71c4af2912 | 139 | * tlc.set(0, 0xfff); |
mjr | 26:cb71c4af2912 | 140 | * |
mjr | 26:cb71c4af2912 | 141 | * while(1) |
mjr | 26:cb71c4af2912 | 142 | * { |
mjr | 26:cb71c4af2912 | 143 | * } |
mjr | 26:cb71c4af2912 | 144 | * } |
mjr | 26:cb71c4af2912 | 145 | * @endcode |
mjr | 26:cb71c4af2912 | 146 | */ |
mjr | 26:cb71c4af2912 | 147 | class TLC5940 |
mjr | 26:cb71c4af2912 | 148 | { |
mjr | 26:cb71c4af2912 | 149 | public: |
mjr | 26:cb71c4af2912 | 150 | /** |
mjr | 26:cb71c4af2912 | 151 | * Set up the TLC5940 |
mjr | 26:cb71c4af2912 | 152 | * @param SCLK - The SCK pin of the SPI bus |
mjr | 26:cb71c4af2912 | 153 | * @param MOSI - The MOSI pin of the SPI bus |
mjr | 26:cb71c4af2912 | 154 | * @param GSCLK - The GSCLK pin of the TLC5940(s) |
mjr | 26:cb71c4af2912 | 155 | * @param BLANK - The BLANK pin of the TLC5940(s) |
mjr | 26:cb71c4af2912 | 156 | * @param XLAT - The XLAT pin of the TLC5940(s) |
mjr | 26:cb71c4af2912 | 157 | * @param nchips - The number of TLC5940s (if you are daisy chaining) |
mjr | 26:cb71c4af2912 | 158 | */ |
mjr | 26:cb71c4af2912 | 159 | TLC5940(PinName SCLK, PinName MOSI, PinName GSCLK, PinName BLANK, PinName XLAT, int nchips) |
mjr | 26:cb71c4af2912 | 160 | : spi(MOSI, NC, SCLK), |
mjr | 26:cb71c4af2912 | 161 | gsclk(GSCLK), |
mjr | 26:cb71c4af2912 | 162 | blank(BLANK), |
mjr | 26:cb71c4af2912 | 163 | xlat(XLAT), |
mjr | 33:d832bcab089e | 164 | nchips(nchips) |
mjr | 26:cb71c4af2912 | 165 | { |
mjr | 33:d832bcab089e | 166 | // set XLAT to initially off |
mjr | 30:6e9902f06f48 | 167 | xlat = 0; |
mjr | 33:d832bcab089e | 168 | |
mjr | 33:d832bcab089e | 169 | // Assert BLANK while starting up, to keep the outputs turned off until |
mjr | 33:d832bcab089e | 170 | // everything is stable. This helps prevent spurious flashes during startup. |
mjr | 33:d832bcab089e | 171 | // (That's not particularly important for lights, but it matters more for |
mjr | 33:d832bcab089e | 172 | // tactile devices. It's a bit alarming to fire a replay knocker on every |
mjr | 33:d832bcab089e | 173 | // power-on, for example.) |
mjr | 30:6e9902f06f48 | 174 | blank = 1; |
mjr | 30:6e9902f06f48 | 175 | |
mjr | 26:cb71c4af2912 | 176 | // Configure SPI format and speed. Note that KL25Z ONLY supports 8-bit |
mjr | 26:cb71c4af2912 | 177 | // mode. The TLC5940 nominally requires 12-bit data blocks for the |
mjr | 26:cb71c4af2912 | 178 | // grayscale levels, but SPI is ultimately just a bit-level serial format, |
mjr | 26:cb71c4af2912 | 179 | // so we can reformat the 12-bit blocks into 8-bit bytes to fit the |
mjr | 26:cb71c4af2912 | 180 | // KL25Z's limits. This should work equally well on other microcontrollers |
mjr | 38:091e511ce8a0 | 181 | // that are more flexible. The TLC5940 requires polarity/phase format 0. |
mjr | 26:cb71c4af2912 | 182 | spi.format(8, 0); |
mjr | 26:cb71c4af2912 | 183 | spi.frequency(SPI_SPEED); |
mjr | 33:d832bcab089e | 184 | |
mjr | 33:d832bcab089e | 185 | // Send out a full data set to the chips, to clear out any random |
mjr | 33:d832bcab089e | 186 | // startup data from the registers. Include some extra bits - there |
mjr | 33:d832bcab089e | 187 | // are some cases (such as after sending dot correct commands) where |
mjr | 33:d832bcab089e | 188 | // an extra bit per chip is required, and the initial state is |
mjr | 33:d832bcab089e | 189 | // somewhat unpredictable, so send extra just to make sure we cover |
mjr | 33:d832bcab089e | 190 | // all bases. This does no harm; extra bits just fall off the end of |
mjr | 33:d832bcab089e | 191 | // the daisy chain, and since we want all registers set to 0, we can |
mjr | 33:d832bcab089e | 192 | // send arbitrarily many extra 0's. |
mjr | 33:d832bcab089e | 193 | for (int i = 0 ; i < nchips*25 ; ++i) |
mjr | 33:d832bcab089e | 194 | spi.write(0); |
mjr | 33:d832bcab089e | 195 | |
mjr | 33:d832bcab089e | 196 | // do an initial XLAT to latch all of these "0" values into the |
mjr | 33:d832bcab089e | 197 | // grayscale registers |
mjr | 33:d832bcab089e | 198 | xlat = 1; |
mjr | 33:d832bcab089e | 199 | xlat = 0; |
mjr | 29:582472d0bc57 | 200 | |
mjr | 39:b3815a1c3802 | 201 | // Allocate our DMA buffers. The transfer on each cycle is 192 bits per |
mjr | 39:b3815a1c3802 | 202 | // chip = 24 bytes per chip. |
mjr | 30:6e9902f06f48 | 203 | dmabuf = new char[nchips*24]; |
mjr | 38:091e511ce8a0 | 204 | memset(dmabuf, 0, nchips*24); |
mjr | 26:cb71c4af2912 | 205 | |
mjr | 30:6e9902f06f48 | 206 | // Set up the Simple DMA interface object. We use the DMA controller to |
mjr | 30:6e9902f06f48 | 207 | // send grayscale data updates to the TLC5940 chips. This lets the CPU |
mjr | 30:6e9902f06f48 | 208 | // keep running other tasks while we send gs updates, and importantly |
mjr | 30:6e9902f06f48 | 209 | // allows our blanking interrupt handler return almost immediately. |
mjr | 30:6e9902f06f48 | 210 | // The DMA transfer is from our internal DMA buffer to SPI0, which is |
mjr | 30:6e9902f06f48 | 211 | // the SPI controller physically connected to the TLC5940s. |
mjr | 38:091e511ce8a0 | 212 | sdma.source(dmabuf, true, 8); |
mjr | 38:091e511ce8a0 | 213 | sdma.destination(&(SPI0->D), false, 8); |
mjr | 30:6e9902f06f48 | 214 | sdma.trigger(Trigger_SPI0_TX); |
mjr | 30:6e9902f06f48 | 215 | sdma.attach(this, &TLC5940::dmaDone); |
mjr | 30:6e9902f06f48 | 216 | |
mjr | 30:6e9902f06f48 | 217 | // Enable DMA on SPI0. SimpleDMA doesn't do this for us; we have to |
mjr | 30:6e9902f06f48 | 218 | // do it explicitly. This is just a matter of setting bit 5 (TXDMAE) |
mjr | 38:091e511ce8a0 | 219 | // in the SPI controller's Control Register 2 (C2). |
mjr | 30:6e9902f06f48 | 220 | SPI0->C2 |= 0x20; // set bit 5 = 0x20 = TXDMAE in SPI0 control register 2 |
mjr | 30:6e9902f06f48 | 221 | |
mjr | 30:6e9902f06f48 | 222 | // Configure the GSCLK output's frequency |
mjr | 26:cb71c4af2912 | 223 | gsclk.period(1.0/GSCLK_SPEED); |
mjr | 33:d832bcab089e | 224 | |
mjr | 33:d832bcab089e | 225 | // mark that we need an initial update |
mjr | 33:d832bcab089e | 226 | newGSData = true; |
mjr | 33:d832bcab089e | 227 | needXlat = false; |
mjr | 30:6e9902f06f48 | 228 | } |
mjr | 29:582472d0bc57 | 229 | |
mjr | 30:6e9902f06f48 | 230 | // Start the clock running |
mjr | 29:582472d0bc57 | 231 | void start() |
mjr | 29:582472d0bc57 | 232 | { |
mjr | 26:cb71c4af2912 | 233 | // Set up the first call to the reset function, which asserts BLANK to |
mjr | 26:cb71c4af2912 | 234 | // end the PWM cycle and handles new grayscale data output and latching. |
mjr | 26:cb71c4af2912 | 235 | // The original version of this library uses a timer to call reset |
mjr | 26:cb71c4af2912 | 236 | // periodically, but that approach is somewhat problematic because the |
mjr | 26:cb71c4af2912 | 237 | // reset function itself takes a small amount of time to run, so the |
mjr | 26:cb71c4af2912 | 238 | // *actual* cycle is slightly longer than what we get from counting |
mjr | 26:cb71c4af2912 | 239 | // GS clocks. Running reset on a timer therefore causes the calls to |
mjr | 26:cb71c4af2912 | 240 | // slip out of phase with the actual full cycles, which causes |
mjr | 26:cb71c4af2912 | 241 | // premature blanking that shows up as visible flicker. To get the |
mjr | 26:cb71c4af2912 | 242 | // reset cycle to line up exactly with a full PWM cycle, it works |
mjr | 26:cb71c4af2912 | 243 | // better to set up a new timer on each cycle, *after* we've finished |
mjr | 26:cb71c4af2912 | 244 | // with the somewhat unpredictable overhead of the interrupt handler. |
mjr | 26:cb71c4af2912 | 245 | // This ensures that we'll get much closer to exact alignment of the |
mjr | 26:cb71c4af2912 | 246 | // cycle phase, and in any case the worst that happens is that some |
mjr | 26:cb71c4af2912 | 247 | // cycles are very slightly too long or short (due to imperfections |
mjr | 26:cb71c4af2912 | 248 | // in the timer clock vs the PWM clock that determines the GSCLCK |
mjr | 26:cb71c4af2912 | 249 | // output to the TLC5940), which is far less noticeable than a |
mjr | 26:cb71c4af2912 | 250 | // constantly rotating phase misalignment. |
mjr | 38:091e511ce8a0 | 251 | resetTimer.attach(this, &TLC5940::reset, (1.0/GSCLK_SPEED)*4096.0); |
mjr | 26:cb71c4af2912 | 252 | } |
mjr | 26:cb71c4af2912 | 253 | |
mjr | 26:cb71c4af2912 | 254 | ~TLC5940() |
mjr | 26:cb71c4af2912 | 255 | { |
mjr | 30:6e9902f06f48 | 256 | delete [] dmabuf; |
mjr | 26:cb71c4af2912 | 257 | } |
mjr | 26:cb71c4af2912 | 258 | |
mjr | 39:b3815a1c3802 | 259 | /* |
mjr | 39:b3815a1c3802 | 260 | * Set an output |
mjr | 26:cb71c4af2912 | 261 | */ |
mjr | 26:cb71c4af2912 | 262 | void set(int idx, unsigned short data) |
mjr | 26:cb71c4af2912 | 263 | { |
mjr | 39:b3815a1c3802 | 264 | // validate the index |
mjr | 39:b3815a1c3802 | 265 | if (idx >= 0 && idx < nchips*16) |
mjr | 39:b3815a1c3802 | 266 | { |
mjr | 39:b3815a1c3802 | 267 | // Figure the DMA buffer location of the data. The DMA buffer has the |
mjr | 39:b3815a1c3802 | 268 | // packed bit format that we send across the wire, with 12 bits per output, |
mjr | 39:b3815a1c3802 | 269 | // arranged from last output to first output (N = number of outputs = nchips*16): |
mjr | 39:b3815a1c3802 | 270 | // |
mjr | 39:b3815a1c3802 | 271 | // byte 0 = high 8 bits of output N-1 |
mjr | 39:b3815a1c3802 | 272 | // 1 = low 4 bits of output N-1 | high 4 bits of output N-2 |
mjr | 39:b3815a1c3802 | 273 | // 2 = low 8 bits of N-2 |
mjr | 39:b3815a1c3802 | 274 | // 3 = high 8 bits of N-3 |
mjr | 39:b3815a1c3802 | 275 | // 4 = low 4 bits of N-3 | high 4 bits of N-2 |
mjr | 39:b3815a1c3802 | 276 | // 5 = low 8bits of N-4 |
mjr | 39:b3815a1c3802 | 277 | // ... |
mjr | 39:b3815a1c3802 | 278 | // 24*nchips-3 = high 8 bits of output 1 |
mjr | 39:b3815a1c3802 | 279 | // 24*nchips-2 = low 4 bits of output 1 | high 4 bits of output 0 |
mjr | 39:b3815a1c3802 | 280 | // 24*nchips-1 = low 8 bits of output 0 |
mjr | 39:b3815a1c3802 | 281 | // |
mjr | 39:b3815a1c3802 | 282 | // So this update will affect two bytes. If the output number if even, we're |
mjr | 39:b3815a1c3802 | 283 | // in the high 4 + low 8 pair; if odd, we're in the high 8 + low 4 pair. |
mjr | 39:b3815a1c3802 | 284 | int di = nchips*24 - 3 - (3*(idx/2)); |
mjr | 39:b3815a1c3802 | 285 | if (idx & 1) |
mjr | 39:b3815a1c3802 | 286 | { |
mjr | 39:b3815a1c3802 | 287 | //printf("out %d = %d -> updating dma[%d] odd (xx x. ..)\r\n", idx, data, di); |
mjr | 39:b3815a1c3802 | 288 | // ODD = high 8 | low 4 |
mjr | 39:b3815a1c3802 | 289 | dmabuf[di] = uint8_t((data >> 4) & 0xff); |
mjr | 39:b3815a1c3802 | 290 | dmabuf[di+1] &= 0x0F; |
mjr | 39:b3815a1c3802 | 291 | dmabuf[di+1] |= uint8_t((data << 4) & 0xf0); |
mjr | 39:b3815a1c3802 | 292 | } |
mjr | 39:b3815a1c3802 | 293 | else |
mjr | 39:b3815a1c3802 | 294 | { |
mjr | 39:b3815a1c3802 | 295 | // EVEN = high 4 | low 8 |
mjr | 39:b3815a1c3802 | 296 | //printf("out %d = %d -> updating dma[%d] even (.. .x xx)\r\n", idx, data, di); |
mjr | 39:b3815a1c3802 | 297 | dmabuf[di+1] &= 0xF0; |
mjr | 39:b3815a1c3802 | 298 | dmabuf[di+1] |= uint8_t((data >> 8) & 0x0f); |
mjr | 39:b3815a1c3802 | 299 | dmabuf[di+2] = uint8_t(data & 0xff); |
mjr | 39:b3815a1c3802 | 300 | } |
mjr | 39:b3815a1c3802 | 301 | |
mjr | 39:b3815a1c3802 | 302 | // note the update |
mjr | 39:b3815a1c3802 | 303 | newGSData = true; |
mjr | 39:b3815a1c3802 | 304 | } |
mjr | 26:cb71c4af2912 | 305 | } |
mjr | 26:cb71c4af2912 | 306 | |
mjr | 26:cb71c4af2912 | 307 | private: |
mjr | 26:cb71c4af2912 | 308 | // current level for each output |
mjr | 26:cb71c4af2912 | 309 | unsigned short *gs; |
mjr | 26:cb71c4af2912 | 310 | |
mjr | 30:6e9902f06f48 | 311 | // Simple DMA interface object |
mjr | 30:6e9902f06f48 | 312 | SimpleDMA sdma; |
mjr | 30:6e9902f06f48 | 313 | |
mjr | 30:6e9902f06f48 | 314 | // DMA transfer buffer. Each time we have data to transmit to the TLC5940 chips, |
mjr | 30:6e9902f06f48 | 315 | // we format the data into this buffer exactly as it will go across the wire, then |
mjr | 30:6e9902f06f48 | 316 | // hand the buffer to the DMA controller to move through the SPI port. |
mjr | 30:6e9902f06f48 | 317 | char *dmabuf; |
mjr | 30:6e9902f06f48 | 318 | |
mjr | 26:cb71c4af2912 | 319 | // SPI port - only MOSI and SCK are used |
mjr | 26:cb71c4af2912 | 320 | SPI spi; |
mjr | 26:cb71c4af2912 | 321 | |
mjr | 26:cb71c4af2912 | 322 | // use a PWM out for the grayscale clock - this provides a stable |
mjr | 26:cb71c4af2912 | 323 | // square wave signal without consuming CPU |
mjr | 26:cb71c4af2912 | 324 | FastPWM gsclk; |
mjr | 26:cb71c4af2912 | 325 | |
mjr | 26:cb71c4af2912 | 326 | // Digital out pins used for the TLC5940 |
mjr | 26:cb71c4af2912 | 327 | DigitalOut blank; |
mjr | 26:cb71c4af2912 | 328 | DigitalOut xlat; |
mjr | 26:cb71c4af2912 | 329 | |
mjr | 26:cb71c4af2912 | 330 | // number of daisy-chained TLC5940s we're controlling |
mjr | 26:cb71c4af2912 | 331 | int nchips; |
mjr | 26:cb71c4af2912 | 332 | |
mjr | 26:cb71c4af2912 | 333 | // Timeout to end each PWM cycle. This is a one-shot timer that we reset |
mjr | 26:cb71c4af2912 | 334 | // on each cycle. |
mjr | 38:091e511ce8a0 | 335 | Timeout resetTimer; |
mjr | 26:cb71c4af2912 | 336 | |
mjr | 26:cb71c4af2912 | 337 | // Has new GS/DC data been loaded? |
mjr | 26:cb71c4af2912 | 338 | volatile bool newGSData; |
mjr | 33:d832bcab089e | 339 | |
mjr | 33:d832bcab089e | 340 | // Do we need an XLAT signal on the next blanking interval? |
mjr | 33:d832bcab089e | 341 | volatile bool needXlat; |
mjr | 26:cb71c4af2912 | 342 | |
mjr | 26:cb71c4af2912 | 343 | // Function to reset the display and send the next chunks of data |
mjr | 26:cb71c4af2912 | 344 | void reset() |
mjr | 26:cb71c4af2912 | 345 | { |
mjr | 30:6e9902f06f48 | 346 | // start the blanking cycle |
mjr | 30:6e9902f06f48 | 347 | startBlank(); |
mjr | 33:d832bcab089e | 348 | |
mjr | 33:d832bcab089e | 349 | #if DATA_UPDATE_INSIDE_BLANKING |
mjr | 33:d832bcab089e | 350 | // We're configured to send the new GS data entirely within |
mjr | 33:d832bcab089e | 351 | // the blanking interval. Start the DMA transfer now, and |
mjr | 33:d832bcab089e | 352 | // return without ending the blanking interval. The DMA |
mjr | 33:d832bcab089e | 353 | // completion interrupt handler will do that when the data |
mjr | 33:d832bcab089e | 354 | // update has completed. |
mjr | 33:d832bcab089e | 355 | // |
mjr | 33:d832bcab089e | 356 | // Note that we do the data update/ unconditionally in the |
mjr | 33:d832bcab089e | 357 | // send-during-blanking case, whether or not we have new GS |
mjr | 33:d832bcab089e | 358 | // data. This is because the update causes a 0.3% reduction |
mjr | 33:d832bcab089e | 359 | // in brightness because of the elongated BLANK interval. |
mjr | 33:d832bcab089e | 360 | // That would be visible as a flicker on each update if we |
mjr | 33:d832bcab089e | 361 | // did updates on some cycles and not others. By doing an |
mjr | 33:d832bcab089e | 362 | // update on every cycle, we make the brightness reduction |
mjr | 33:d832bcab089e | 363 | // uniform across time, which makes it less perceptible. |
mjr | 38:091e511ce8a0 | 364 | sdma.start(nchips*24); |
mjr | 33:d832bcab089e | 365 | |
mjr | 33:d832bcab089e | 366 | #else // DATA_UPDATE_INSIDE_BLANKING |
mjr | 33:d832bcab089e | 367 | |
mjr | 33:d832bcab089e | 368 | // end the blanking interval |
mjr | 33:d832bcab089e | 369 | endBlank(); |
mjr | 33:d832bcab089e | 370 | |
mjr | 38:091e511ce8a0 | 371 | // if we have pending grayscale data, update the DMA data |
mjr | 39:b3815a1c3802 | 372 | // if (newGSData) |
mjr | 39:b3815a1c3802 | 373 | { |
mjr | 39:b3815a1c3802 | 374 | // send out the DMA contents |
mjr | 39:b3815a1c3802 | 375 | sdma.start(nchips*24); |
mjr | 39:b3815a1c3802 | 376 | |
mjr | 39:b3815a1c3802 | 377 | // we don't have to send again until the next gs data cahnge |
mjr | 39:b3815a1c3802 | 378 | newGSData = false; |
mjr | 39:b3815a1c3802 | 379 | } |
mjr | 26:cb71c4af2912 | 380 | |
mjr | 33:d832bcab089e | 381 | #endif // DATA_UPDATE_INSIDE_BLANKING |
mjr | 30:6e9902f06f48 | 382 | } |
mjr | 30:6e9902f06f48 | 383 | |
mjr | 30:6e9902f06f48 | 384 | void startBlank() |
mjr | 30:6e9902f06f48 | 385 | { |
mjr | 30:6e9902f06f48 | 386 | // turn off the grayscale clock, and assert BLANK to end the grayscale cycle |
mjr | 30:6e9902f06f48 | 387 | gsclk.write(0); |
mjr | 30:6e9902f06f48 | 388 | blank = 1; |
mjr | 30:6e9902f06f48 | 389 | } |
mjr | 26:cb71c4af2912 | 390 | |
mjr | 33:d832bcab089e | 391 | void endBlank() |
mjr | 30:6e9902f06f48 | 392 | { |
mjr | 33:d832bcab089e | 393 | // if we've sent new grayscale data since the last blanking |
mjr | 33:d832bcab089e | 394 | // interval, latch it by asserting XLAT |
mjr | 33:d832bcab089e | 395 | if (needXlat) |
mjr | 30:6e9902f06f48 | 396 | { |
mjr | 26:cb71c4af2912 | 397 | // latch the new data while we're still blanked |
mjr | 26:cb71c4af2912 | 398 | xlat = 1; |
mjr | 26:cb71c4af2912 | 399 | xlat = 0; |
mjr | 33:d832bcab089e | 400 | needXlat = false; |
mjr | 26:cb71c4af2912 | 401 | } |
mjr | 26:cb71c4af2912 | 402 | |
mjr | 26:cb71c4af2912 | 403 | // end the blanking interval and restart the grayscale clock |
mjr | 26:cb71c4af2912 | 404 | blank = 0; |
mjr | 26:cb71c4af2912 | 405 | gsclk.write(.5); |
mjr | 26:cb71c4af2912 | 406 | |
mjr | 26:cb71c4af2912 | 407 | // set up the next blanking interrupt |
mjr | 38:091e511ce8a0 | 408 | resetTimer.attach(this, &TLC5940::reset, (1.0/GSCLK_SPEED)*4096.0); |
mjr | 26:cb71c4af2912 | 409 | } |
mjr | 26:cb71c4af2912 | 410 | |
mjr | 30:6e9902f06f48 | 411 | // Interrupt handler for DMA completion. The DMA controller calls this |
mjr | 30:6e9902f06f48 | 412 | // when it finishes with the transfer request we set up above. When the |
mjr | 30:6e9902f06f48 | 413 | // transfer is done, we simply end the blanking cycle and start a new |
mjr | 30:6e9902f06f48 | 414 | // grayscale cycle. |
mjr | 30:6e9902f06f48 | 415 | void dmaDone() |
mjr | 30:6e9902f06f48 | 416 | { |
mjr | 33:d832bcab089e | 417 | // mark that we need to assert XLAT to latch the new |
mjr | 33:d832bcab089e | 418 | // grayscale data during the next blanking interval |
mjr | 33:d832bcab089e | 419 | needXlat = true; |
mjr | 33:d832bcab089e | 420 | |
mjr | 33:d832bcab089e | 421 | #if DATA_UPDATE_INSIDE_BLANKING |
mjr | 33:d832bcab089e | 422 | // we're doing the gs update within the blanking cycle, so end |
mjr | 33:d832bcab089e | 423 | // the blanking cycle now that the transfer has completed |
mjr | 33:d832bcab089e | 424 | endBlank(); |
mjr | 33:d832bcab089e | 425 | #endif |
mjr | 30:6e9902f06f48 | 426 | } |
mjr | 30:6e9902f06f48 | 427 | |
mjr | 26:cb71c4af2912 | 428 | }; |
mjr | 26:cb71c4af2912 | 429 | |
mjr | 26:cb71c4af2912 | 430 | #endif |