Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Fri Feb 26 18:42:03 2016 +0000
Revision:
48:058ace2aed1d
Parent:
47:df7a88cd249c
Child:
54:fd77a6b2f76c
New plunger processing 1

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 26:cb71c4af2912 1 // Pinscape Controller TLC5940 interface
mjr 26:cb71c4af2912 2 //
mjr 26:cb71c4af2912 3 // Based on Spencer Davis's mbed TLC5940 library. Adapted for the
mjr 26:cb71c4af2912 4 // KL25Z, and simplified to just the functions needed for this
mjr 26:cb71c4af2912 5 // application. In particular, this version doesn't include support
mjr 26:cb71c4af2912 6 // for dot correction programming or status input. This version also
mjr 26:cb71c4af2912 7 // uses a different approach for sending the grayscale data updates,
mjr 26:cb71c4af2912 8 // sending updates during the blanking interval rather than overlapping
mjr 26:cb71c4af2912 9 // them with the PWM cycle. This results in very slightly longer
mjr 26:cb71c4af2912 10 // blanking intervals when updates are pending, effectively reducing
mjr 26:cb71c4af2912 11 // the PWM "on" duty cycle (and thus the output brightness) by about
mjr 26:cb71c4af2912 12 // 0.3%. This shouldn't be perceptible to users, so it's a small
mjr 26:cb71c4af2912 13 // trade-off for the advantage gained, which is much better signal
mjr 26:cb71c4af2912 14 // stability when using multiple TLC5940s daisy-chained together.
mjr 26:cb71c4af2912 15 // I saw a lot of instability when using the overlapped approach,
mjr 26:cb71c4af2912 16 // which seems to be eliminated entirely when sending updates during
mjr 26:cb71c4af2912 17 // the blanking interval.
mjr 26:cb71c4af2912 18
mjr 26:cb71c4af2912 19
mjr 26:cb71c4af2912 20 #ifndef TLC5940_H
mjr 26:cb71c4af2912 21 #define TLC5940_H
mjr 26:cb71c4af2912 22
mjr 38:091e511ce8a0 23 // Data Transmission Mode.
mjr 38:091e511ce8a0 24 //
mjr 38:091e511ce8a0 25 // NOTE! This section contains a possible workaround to try if you're
mjr 38:091e511ce8a0 26 // having data signal stability problems with your TLC5940 chips. If
mjr 40:cc0d9814522b 27 // things are working properly, you can ignore this part.
mjr 33:d832bcab089e 28 //
mjr 38:091e511ce8a0 29 // The software has two options for sending data updates to the chips:
mjr 38:091e511ce8a0 30 //
mjr 40:cc0d9814522b 31 // Mode 0: Send data *during* the grayscale cycle. This is the default,
mjr 40:cc0d9814522b 32 // and it's the standard method the chips are designed for. In this mode,
mjr 40:cc0d9814522b 33 // we start sending an update just after then blanking interval that starts
mjr 40:cc0d9814522b 34 // a new grayscale cycle. The timing is arranged so that the update is
mjr 40:cc0d9814522b 35 // completed well before the end of the grayscale cycle. At the next
mjr 40:cc0d9814522b 36 // blanking interval, we latch the new data, so the new brightness levels
mjr 40:cc0d9814522b 37 // will be shown starting on the next cycle.
mjr 40:cc0d9814522b 38
mjr 38:091e511ce8a0 39 // Mode 1: Send data *between* grayscale cycles. In this mode, we send
mjr 38:091e511ce8a0 40 // each complete update during a blanking period, then latch the update
mjr 38:091e511ce8a0 41 // and start the next grayscale cycle. This isn't the way the chips were
mjr 38:091e511ce8a0 42 // intended to be used, but it works. The disadvantage is that it requires
mjr 40:cc0d9814522b 43 // the blanking interval to be extended long enough for the full data
mjr 40:cc0d9814522b 44 // update (192 bits * the number of chips in the chain). Since the
mjr 40:cc0d9814522b 45 // outputs are turned off throughout the blanking period, this reduces
mjr 38:091e511ce8a0 46 // the overall brightness/intensity of the outputs by reducing the duty
mjr 38:091e511ce8a0 47 // cycle. The TLC5940 chips can't achieve 100% duty cycle to begin with,
mjr 40:cc0d9814522b 48 // since they require a brief minimum time in the blanking interval
mjr 38:091e511ce8a0 49 // between grayscale cycles; however, the minimum is so short that the
mjr 38:091e511ce8a0 50 // duty cycle is close to 100%. With the full data transmission stuffed
mjr 38:091e511ce8a0 51 // into the blanking interval, we reduce the duty cycle further below
mjr 38:091e511ce8a0 52 // 100%. With four chips in the chain, a 28 MHz data clock, and a
mjr 38:091e511ce8a0 53 // 500 kHz grayscale clock, the reduction is about 0.3%.
mjr 33:d832bcab089e 54 //
mjr 40:cc0d9814522b 55 // Mode 0 is the method documented in the manufacturer's data sheet.
mjr 40:cc0d9814522b 56 // It works well empirically with the Pinscape expansion boards.
mjr 40:cc0d9814522b 57 //
mjr 38:091e511ce8a0 58 // So what's the point of Mode 1? In early testing, with a breadboard
mjr 38:091e511ce8a0 59 // setup, I saw some problems with data signal stability, which manifested
mjr 38:091e511ce8a0 60 // as sporadic flickering in the outputs. Switching to Mode 1 improved
mjr 38:091e511ce8a0 61 // the signal stability considerably. I'm therefore leaving this code
mjr 38:091e511ce8a0 62 // available as an option in case anyone runs into similar signal problems
mjr 38:091e511ce8a0 63 // and wants to try the alternative mode as a workaround.
mjr 38:091e511ce8a0 64 //
mjr 38:091e511ce8a0 65 #define DATA_UPDATE_INSIDE_BLANKING 0
mjr 33:d832bcab089e 66
mjr 26:cb71c4af2912 67 #include "mbed.h"
mjr 26:cb71c4af2912 68 #include "FastPWM.h"
mjr 30:6e9902f06f48 69 #include "SimpleDMA.h"
mjr 47:df7a88cd249c 70 #include "DMAChannels.h"
mjr 26:cb71c4af2912 71
mjr 26:cb71c4af2912 72 /**
mjr 26:cb71c4af2912 73 * SPI speed used by the mbed to communicate with the TLC5940
mjr 26:cb71c4af2912 74 * The TLC5940 supports up to 30Mhz. It's best to keep this as
mjr 33:d832bcab089e 75 * high as possible, since a higher SPI speed yields a faster
mjr 33:d832bcab089e 76 * grayscale data update. However, I've seen some slight
mjr 33:d832bcab089e 77 * instability in the signal in my breadboard setup using the
mjr 33:d832bcab089e 78 * full 30MHz, so I've reduced this slightly, which seems to
mjr 33:d832bcab089e 79 * yield a solid signal. The limit will vary according to how
mjr 33:d832bcab089e 80 * clean the signal path is to the chips; you can probably crank
mjr 33:d832bcab089e 81 * this up to full speed if you have a well-designed PCB, good
mjr 33:d832bcab089e 82 * decoupling capacitors near the 5940 VCC/GND pins, and short
mjr 33:d832bcab089e 83 * wires between the KL25Z and the PCB. A short, clean path to
mjr 33:d832bcab089e 84 * KL25Z ground seems especially important.
mjr 26:cb71c4af2912 85 *
mjr 26:cb71c4af2912 86 * The SPI clock must be fast enough that the data transmission
mjr 26:cb71c4af2912 87 * time for a full update is comfortably less than the blanking
mjr 26:cb71c4af2912 88 * cycle time. The grayscale refresh requires 192 bits per TLC5940
mjr 26:cb71c4af2912 89 * in the daisy chain, and each bit takes one SPI clock to send.
mjr 26:cb71c4af2912 90 * Our reference setup in the Pinscape controller allows for up to
mjr 26:cb71c4af2912 91 * 4 TLC5940s, so a full refresh cycle on a fully populated system
mjr 26:cb71c4af2912 92 * would be 768 SPI clocks. The blanking cycle is 4096 GSCLK cycles.
mjr 26:cb71c4af2912 93 *
mjr 26:cb71c4af2912 94 * t(blank) = 4096 * 1/GSCLK_SPEED
mjr 26:cb71c4af2912 95 * t(refresh) = 768 * 1/SPI_SPEED
mjr 26:cb71c4af2912 96 * Therefore: SPI_SPEED must be > 768/4096 * GSCLK_SPEED
mjr 26:cb71c4af2912 97 *
mjr 26:cb71c4af2912 98 * Since the SPI speed can be so high, and since we want to keep
mjr 26:cb71c4af2912 99 * the GSCLK speed relatively low, the constraint above simply
mjr 26:cb71c4af2912 100 * isn't a factor. E.g., at SPI=30MHz and GSCLK=500kHz,
mjr 26:cb71c4af2912 101 * t(blank) is 8192us and t(refresh) is 25us.
mjr 26:cb71c4af2912 102 */
mjr 38:091e511ce8a0 103 #define SPI_SPEED 28000000
mjr 26:cb71c4af2912 104
mjr 26:cb71c4af2912 105 /**
mjr 26:cb71c4af2912 106 * The rate at which the GSCLK pin is pulsed. This also controls
mjr 26:cb71c4af2912 107 * how often the reset function is called. The reset function call
mjr 38:091e511ce8a0 108 * interval is (1/GSCLK_SPEED) * 4096. The maximum reliable rate is
mjr 26:cb71c4af2912 109 * around 32Mhz. It's best to keep this rate as low as possible:
mjr 26:cb71c4af2912 110 * the higher the rate, the higher the refresh() call frequency,
mjr 40:cc0d9814522b 111 * so the higher the CPU load. Higher frequencies also make it more
mjr 40:cc0d9814522b 112 * challenging to wire the chips for clean signal transmission, so
mjr 40:cc0d9814522b 113 * minimizing the clock speed will help with signal stability.
mjr 26:cb71c4af2912 114 *
mjr 40:cc0d9814522b 115 * The lower bound depends on the application. For driving lights,
mjr 40:cc0d9814522b 116 * the limiting factor is flicker: the lower the rate, the more
mjr 40:cc0d9814522b 117 * noticeable the flicker. Incandescents tend to look flicker-free
mjr 40:cc0d9814522b 118 * at about 50 Hz (205 kHz grayscale clock). LEDs need slightly
mjr 40:cc0d9814522b 119 * faster rates.
mjr 26:cb71c4af2912 120 */
mjr 40:cc0d9814522b 121 #define GSCLK_SPEED 350000
mjr 26:cb71c4af2912 122
mjr 26:cb71c4af2912 123 /**
mjr 26:cb71c4af2912 124 * This class controls a TLC5940 PWM driver IC.
mjr 26:cb71c4af2912 125 *
mjr 26:cb71c4af2912 126 * Using the TLC5940 class to control an LED:
mjr 26:cb71c4af2912 127 * @code
mjr 26:cb71c4af2912 128 * #include "mbed.h"
mjr 26:cb71c4af2912 129 * #include "TLC5940.h"
mjr 26:cb71c4af2912 130 *
mjr 26:cb71c4af2912 131 * // Create the TLC5940 instance
mjr 26:cb71c4af2912 132 * TLC5940 tlc(p7, p5, p21, p9, p10, p11, p12, 1);
mjr 26:cb71c4af2912 133 *
mjr 26:cb71c4af2912 134 * int main()
mjr 26:cb71c4af2912 135 * {
mjr 26:cb71c4af2912 136 * // Enable the first LED
mjr 26:cb71c4af2912 137 * tlc.set(0, 0xfff);
mjr 26:cb71c4af2912 138 *
mjr 26:cb71c4af2912 139 * while(1)
mjr 26:cb71c4af2912 140 * {
mjr 26:cb71c4af2912 141 * }
mjr 26:cb71c4af2912 142 * }
mjr 26:cb71c4af2912 143 * @endcode
mjr 26:cb71c4af2912 144 */
mjr 26:cb71c4af2912 145 class TLC5940
mjr 26:cb71c4af2912 146 {
mjr 26:cb71c4af2912 147 public:
mjr 26:cb71c4af2912 148 /**
mjr 26:cb71c4af2912 149 * Set up the TLC5940
mjr 26:cb71c4af2912 150 * @param SCLK - The SCK pin of the SPI bus
mjr 26:cb71c4af2912 151 * @param MOSI - The MOSI pin of the SPI bus
mjr 26:cb71c4af2912 152 * @param GSCLK - The GSCLK pin of the TLC5940(s)
mjr 26:cb71c4af2912 153 * @param BLANK - The BLANK pin of the TLC5940(s)
mjr 26:cb71c4af2912 154 * @param XLAT - The XLAT pin of the TLC5940(s)
mjr 26:cb71c4af2912 155 * @param nchips - The number of TLC5940s (if you are daisy chaining)
mjr 26:cb71c4af2912 156 */
mjr 26:cb71c4af2912 157 TLC5940(PinName SCLK, PinName MOSI, PinName GSCLK, PinName BLANK, PinName XLAT, int nchips)
mjr 47:df7a88cd249c 158 : sdma(DMAch_TLC5940),
mjr 47:df7a88cd249c 159 spi(MOSI, NC, SCLK),
mjr 26:cb71c4af2912 160 gsclk(GSCLK),
mjr 26:cb71c4af2912 161 blank(BLANK),
mjr 26:cb71c4af2912 162 xlat(XLAT),
mjr 33:d832bcab089e 163 nchips(nchips)
mjr 26:cb71c4af2912 164 {
mjr 40:cc0d9814522b 165 // start up initially disabled
mjr 40:cc0d9814522b 166 enabled = false;
mjr 40:cc0d9814522b 167
mjr 33:d832bcab089e 168 // set XLAT to initially off
mjr 30:6e9902f06f48 169 xlat = 0;
mjr 33:d832bcab089e 170
mjr 33:d832bcab089e 171 // Assert BLANK while starting up, to keep the outputs turned off until
mjr 33:d832bcab089e 172 // everything is stable. This helps prevent spurious flashes during startup.
mjr 33:d832bcab089e 173 // (That's not particularly important for lights, but it matters more for
mjr 33:d832bcab089e 174 // tactile devices. It's a bit alarming to fire a replay knocker on every
mjr 33:d832bcab089e 175 // power-on, for example.)
mjr 30:6e9902f06f48 176 blank = 1;
mjr 30:6e9902f06f48 177
mjr 26:cb71c4af2912 178 // Configure SPI format and speed. Note that KL25Z ONLY supports 8-bit
mjr 26:cb71c4af2912 179 // mode. The TLC5940 nominally requires 12-bit data blocks for the
mjr 26:cb71c4af2912 180 // grayscale levels, but SPI is ultimately just a bit-level serial format,
mjr 26:cb71c4af2912 181 // so we can reformat the 12-bit blocks into 8-bit bytes to fit the
mjr 26:cb71c4af2912 182 // KL25Z's limits. This should work equally well on other microcontrollers
mjr 38:091e511ce8a0 183 // that are more flexible. The TLC5940 requires polarity/phase format 0.
mjr 26:cb71c4af2912 184 spi.format(8, 0);
mjr 26:cb71c4af2912 185 spi.frequency(SPI_SPEED);
mjr 33:d832bcab089e 186
mjr 33:d832bcab089e 187 // Send out a full data set to the chips, to clear out any random
mjr 33:d832bcab089e 188 // startup data from the registers. Include some extra bits - there
mjr 33:d832bcab089e 189 // are some cases (such as after sending dot correct commands) where
mjr 33:d832bcab089e 190 // an extra bit per chip is required, and the initial state is
mjr 33:d832bcab089e 191 // somewhat unpredictable, so send extra just to make sure we cover
mjr 33:d832bcab089e 192 // all bases. This does no harm; extra bits just fall off the end of
mjr 33:d832bcab089e 193 // the daisy chain, and since we want all registers set to 0, we can
mjr 33:d832bcab089e 194 // send arbitrarily many extra 0's.
mjr 33:d832bcab089e 195 for (int i = 0 ; i < nchips*25 ; ++i)
mjr 33:d832bcab089e 196 spi.write(0);
mjr 33:d832bcab089e 197
mjr 33:d832bcab089e 198 // do an initial XLAT to latch all of these "0" values into the
mjr 33:d832bcab089e 199 // grayscale registers
mjr 33:d832bcab089e 200 xlat = 1;
mjr 33:d832bcab089e 201 xlat = 0;
mjr 29:582472d0bc57 202
mjr 39:b3815a1c3802 203 // Allocate our DMA buffers. The transfer on each cycle is 192 bits per
mjr 40:cc0d9814522b 204 // chip = 24 bytes per chip. Allocate two buffers, so that we have a
mjr 40:cc0d9814522b 205 // stable buffer that we can send to the chips, and a separate working
mjr 40:cc0d9814522b 206 // copy that we can asynchronously update.
mjr 40:cc0d9814522b 207 dmalen = nchips*24;
mjr 48:058ace2aed1d 208 livebuf = new uint8_t[dmalen*2];
mjr 48:058ace2aed1d 209 memset(livebuf, 0, dmalen*2);
mjr 40:cc0d9814522b 210
mjr 40:cc0d9814522b 211 // start with buffer 0 live, with no new data pending
mjr 48:058ace2aed1d 212 workbuf = livebuf + dmalen;
mjr 40:cc0d9814522b 213 dirty = false;
mjr 40:cc0d9814522b 214
mjr 30:6e9902f06f48 215 // Set up the Simple DMA interface object. We use the DMA controller to
mjr 30:6e9902f06f48 216 // send grayscale data updates to the TLC5940 chips. This lets the CPU
mjr 30:6e9902f06f48 217 // keep running other tasks while we send gs updates, and importantly
mjr 30:6e9902f06f48 218 // allows our blanking interrupt handler return almost immediately.
mjr 30:6e9902f06f48 219 // The DMA transfer is from our internal DMA buffer to SPI0, which is
mjr 30:6e9902f06f48 220 // the SPI controller physically connected to the TLC5940s.
mjr 40:cc0d9814522b 221 sdma.source(livebuf, true, 8);
mjr 48:058ace2aed1d 222 sdma.destination(&SPI0->D, false, 8);
mjr 30:6e9902f06f48 223 sdma.trigger(Trigger_SPI0_TX);
mjr 30:6e9902f06f48 224 sdma.attach(this, &TLC5940::dmaDone);
mjr 30:6e9902f06f48 225
mjr 30:6e9902f06f48 226 // Configure the GSCLK output's frequency
mjr 26:cb71c4af2912 227 gsclk.period(1.0/GSCLK_SPEED);
mjr 33:d832bcab089e 228
mjr 33:d832bcab089e 229 // mark that we need an initial update
mjr 40:cc0d9814522b 230 dirty = true;
mjr 33:d832bcab089e 231 needXlat = false;
mjr 40:cc0d9814522b 232 }
mjr 40:cc0d9814522b 233
mjr 40:cc0d9814522b 234 // Global enable/disble. When disabled, we assert the blanking signal
mjr 40:cc0d9814522b 235 // continuously to keep all outputs turned off. This can be used during
mjr 40:cc0d9814522b 236 // startup and sleep mode to prevent spurious output signals from
mjr 40:cc0d9814522b 237 // uninitialized grayscale registers. The chips have random values in
mjr 40:cc0d9814522b 238 // their internal registers when power is first applied, so we have to
mjr 40:cc0d9814522b 239 // explicitly send the initial zero levels after power cycling the chips.
mjr 40:cc0d9814522b 240 // The chips might not have power even when the KL25Z is running, because
mjr 40:cc0d9814522b 241 // they might be powered from a separate power supply from the KL25Z
mjr 40:cc0d9814522b 242 // (the Pinscape Expansion Boards work this way). Global blanking helps
mjr 40:cc0d9814522b 243 // us start up more cleanly by suppressing all outputs until we can be
mjr 40:cc0d9814522b 244 // reasonably sure that the various chip registers are initialized.
mjr 40:cc0d9814522b 245 void enable(bool f)
mjr 40:cc0d9814522b 246 {
mjr 40:cc0d9814522b 247 // note the new setting
mjr 40:cc0d9814522b 248 enabled = f;
mjr 40:cc0d9814522b 249
mjr 40:cc0d9814522b 250 // if disabled, apply blanking immediately
mjr 40:cc0d9814522b 251 if (!f)
mjr 40:cc0d9814522b 252 {
mjr 40:cc0d9814522b 253 gsclk.write(0);
mjr 40:cc0d9814522b 254 blank = 1;
mjr 40:cc0d9814522b 255 }
mjr 40:cc0d9814522b 256
mjr 40:cc0d9814522b 257 // do a full update with the new setting
mjr 40:cc0d9814522b 258 dirty = true;
mjr 40:cc0d9814522b 259 }
mjr 29:582472d0bc57 260
mjr 30:6e9902f06f48 261 // Start the clock running
mjr 29:582472d0bc57 262 void start()
mjr 29:582472d0bc57 263 {
mjr 26:cb71c4af2912 264 // Set up the first call to the reset function, which asserts BLANK to
mjr 26:cb71c4af2912 265 // end the PWM cycle and handles new grayscale data output and latching.
mjr 26:cb71c4af2912 266 // The original version of this library uses a timer to call reset
mjr 26:cb71c4af2912 267 // periodically, but that approach is somewhat problematic because the
mjr 26:cb71c4af2912 268 // reset function itself takes a small amount of time to run, so the
mjr 26:cb71c4af2912 269 // *actual* cycle is slightly longer than what we get from counting
mjr 26:cb71c4af2912 270 // GS clocks. Running reset on a timer therefore causes the calls to
mjr 26:cb71c4af2912 271 // slip out of phase with the actual full cycles, which causes
mjr 26:cb71c4af2912 272 // premature blanking that shows up as visible flicker. To get the
mjr 26:cb71c4af2912 273 // reset cycle to line up exactly with a full PWM cycle, it works
mjr 26:cb71c4af2912 274 // better to set up a new timer on each cycle, *after* we've finished
mjr 26:cb71c4af2912 275 // with the somewhat unpredictable overhead of the interrupt handler.
mjr 48:058ace2aed1d 276 // This seems to get us close enough to exact alignment with the cycle
mjr 48:058ace2aed1d 277 // phase to eliminate visible artifacts.
mjr 38:091e511ce8a0 278 resetTimer.attach(this, &TLC5940::reset, (1.0/GSCLK_SPEED)*4096.0);
mjr 26:cb71c4af2912 279 }
mjr 26:cb71c4af2912 280
mjr 39:b3815a1c3802 281 /*
mjr 39:b3815a1c3802 282 * Set an output
mjr 26:cb71c4af2912 283 */
mjr 26:cb71c4af2912 284 void set(int idx, unsigned short data)
mjr 26:cb71c4af2912 285 {
mjr 39:b3815a1c3802 286 // validate the index
mjr 39:b3815a1c3802 287 if (idx >= 0 && idx < nchips*16)
mjr 39:b3815a1c3802 288 {
mjr 40:cc0d9814522b 289 // this is a critical section, since we're updating a static buffer and
mjr 40:cc0d9814522b 290 // can call this routine from application context or interrupt context
mjr 40:cc0d9814522b 291 __disable_irq();
mjr 40:cc0d9814522b 292
mjr 40:cc0d9814522b 293 // If the buffer isn't dirty, it means that the previous working buffer
mjr 40:cc0d9814522b 294 // was swapped into the live buffer on the last blanking interval. This
mjr 40:cc0d9814522b 295 // means that the working buffer hasn't been updated to the live data yet,
mjr 40:cc0d9814522b 296 // so we need to copy it now.
mjr 40:cc0d9814522b 297 if (!dirty)
mjr 40:cc0d9814522b 298 {
mjr 40:cc0d9814522b 299 memcpy(workbuf, livebuf, dmalen);
mjr 40:cc0d9814522b 300 dirty = true;
mjr 40:cc0d9814522b 301 }
mjr 40:cc0d9814522b 302
mjr 39:b3815a1c3802 303 // Figure the DMA buffer location of the data. The DMA buffer has the
mjr 39:b3815a1c3802 304 // packed bit format that we send across the wire, with 12 bits per output,
mjr 39:b3815a1c3802 305 // arranged from last output to first output (N = number of outputs = nchips*16):
mjr 39:b3815a1c3802 306 //
mjr 39:b3815a1c3802 307 // byte 0 = high 8 bits of output N-1
mjr 39:b3815a1c3802 308 // 1 = low 4 bits of output N-1 | high 4 bits of output N-2
mjr 39:b3815a1c3802 309 // 2 = low 8 bits of N-2
mjr 39:b3815a1c3802 310 // 3 = high 8 bits of N-3
mjr 39:b3815a1c3802 311 // 4 = low 4 bits of N-3 | high 4 bits of N-2
mjr 39:b3815a1c3802 312 // 5 = low 8bits of N-4
mjr 39:b3815a1c3802 313 // ...
mjr 39:b3815a1c3802 314 // 24*nchips-3 = high 8 bits of output 1
mjr 39:b3815a1c3802 315 // 24*nchips-2 = low 4 bits of output 1 | high 4 bits of output 0
mjr 39:b3815a1c3802 316 // 24*nchips-1 = low 8 bits of output 0
mjr 39:b3815a1c3802 317 //
mjr 39:b3815a1c3802 318 // So this update will affect two bytes. If the output number if even, we're
mjr 39:b3815a1c3802 319 // in the high 4 + low 8 pair; if odd, we're in the high 8 + low 4 pair.
mjr 39:b3815a1c3802 320 int di = nchips*24 - 3 - (3*(idx/2));
mjr 39:b3815a1c3802 321 if (idx & 1)
mjr 39:b3815a1c3802 322 {
mjr 39:b3815a1c3802 323 // ODD = high 8 | low 4
mjr 40:cc0d9814522b 324 workbuf[di] = uint8_t((data >> 4) & 0xff);
mjr 40:cc0d9814522b 325 workbuf[di+1] &= 0x0F;
mjr 40:cc0d9814522b 326 workbuf[di+1] |= uint8_t((data << 4) & 0xf0);
mjr 39:b3815a1c3802 327 }
mjr 39:b3815a1c3802 328 else
mjr 39:b3815a1c3802 329 {
mjr 39:b3815a1c3802 330 // EVEN = high 4 | low 8
mjr 40:cc0d9814522b 331 workbuf[di+1] &= 0xF0;
mjr 40:cc0d9814522b 332 workbuf[di+1] |= uint8_t((data >> 8) & 0x0f);
mjr 40:cc0d9814522b 333 workbuf[di+2] = uint8_t(data & 0xff);
mjr 39:b3815a1c3802 334 }
mjr 39:b3815a1c3802 335
mjr 40:cc0d9814522b 336 // end the critical section
mjr 40:cc0d9814522b 337 __enable_irq();
mjr 39:b3815a1c3802 338 }
mjr 26:cb71c4af2912 339 }
mjr 40:cc0d9814522b 340
mjr 40:cc0d9814522b 341 // Update the outputs. We automatically update the outputs on the grayscale timer
mjr 40:cc0d9814522b 342 // when we have pending changes, so it's not necessary to call this explicitly after
mjr 40:cc0d9814522b 343 // making a change via set(). This can be called to force an update when the chips
mjr 40:cc0d9814522b 344 // might be out of sync with our internal state, such as after power-on.
mjr 40:cc0d9814522b 345 void update(bool force = false)
mjr 40:cc0d9814522b 346 {
mjr 40:cc0d9814522b 347 if (force)
mjr 40:cc0d9814522b 348 dirty = true;
mjr 40:cc0d9814522b 349 }
mjr 26:cb71c4af2912 350
mjr 26:cb71c4af2912 351 private:
mjr 26:cb71c4af2912 352 // current level for each output
mjr 26:cb71c4af2912 353 unsigned short *gs;
mjr 26:cb71c4af2912 354
mjr 30:6e9902f06f48 355 // Simple DMA interface object
mjr 30:6e9902f06f48 356 SimpleDMA sdma;
mjr 30:6e9902f06f48 357
mjr 40:cc0d9814522b 358 // DMA transfer buffers - double buffer. Each time we have data to transmit to the
mjr 40:cc0d9814522b 359 // TLC5940 chips, we format the data into the working half of this buffer exactly as
mjr 40:cc0d9814522b 360 // it will go across the wire, then hand the buffer to the DMA controller to move
mjr 40:cc0d9814522b 361 // through the SPI port. This memory block is actually two buffers, one live and
mjr 40:cc0d9814522b 362 // one pending. When we're ready to send updates to the chips, we swap the working
mjr 40:cc0d9814522b 363 // buffer into the live buffer so that we can send the latest updates. We keep a
mjr 40:cc0d9814522b 364 // separate working copy so that our live copy is stable, so that we don't alter
mjr 40:cc0d9814522b 365 // any data in the midst of an asynchronous DMA transmission to the chips.
mjr 48:058ace2aed1d 366 uint8_t *volatile livebuf;
mjr 48:058ace2aed1d 367 uint8_t *volatile workbuf;
mjr 40:cc0d9814522b 368
mjr 40:cc0d9814522b 369 // length of each DMA buffer, in bytes - 12 bits = 1.5 bytes per output, 16 outputs
mjr 40:cc0d9814522b 370 // per chip -> 24 bytes per chip
mjr 40:cc0d9814522b 371 uint16_t dmalen;
mjr 40:cc0d9814522b 372
mjr 40:cc0d9814522b 373 // Dirty: true means that the non-live buffer has new pending data. False means
mjr 40:cc0d9814522b 374 // that the non-live buffer is empty.
mjr 40:cc0d9814522b 375 bool dirty;
mjr 40:cc0d9814522b 376
mjr 40:cc0d9814522b 377 // Enabled: this enables or disables all outputs. When this is true, we assert the
mjr 40:cc0d9814522b 378 // BLANK signal continuously.
mjr 40:cc0d9814522b 379 bool enabled;
mjr 30:6e9902f06f48 380
mjr 26:cb71c4af2912 381 // SPI port - only MOSI and SCK are used
mjr 26:cb71c4af2912 382 SPI spi;
mjr 26:cb71c4af2912 383
mjr 26:cb71c4af2912 384 // use a PWM out for the grayscale clock - this provides a stable
mjr 26:cb71c4af2912 385 // square wave signal without consuming CPU
mjr 48:058ace2aed1d 386 PwmOut gsclk;
mjr 26:cb71c4af2912 387
mjr 26:cb71c4af2912 388 // Digital out pins used for the TLC5940
mjr 26:cb71c4af2912 389 DigitalOut blank;
mjr 26:cb71c4af2912 390 DigitalOut xlat;
mjr 26:cb71c4af2912 391
mjr 26:cb71c4af2912 392 // number of daisy-chained TLC5940s we're controlling
mjr 26:cb71c4af2912 393 int nchips;
mjr 26:cb71c4af2912 394
mjr 26:cb71c4af2912 395 // Timeout to end each PWM cycle. This is a one-shot timer that we reset
mjr 26:cb71c4af2912 396 // on each cycle.
mjr 38:091e511ce8a0 397 Timeout resetTimer;
mjr 26:cb71c4af2912 398
mjr 33:d832bcab089e 399 // Do we need an XLAT signal on the next blanking interval?
mjr 33:d832bcab089e 400 volatile bool needXlat;
mjr 40:cc0d9814522b 401 volatile bool newGSData;//$$$
mjr 26:cb71c4af2912 402
mjr 40:cc0d9814522b 403 // Reset the grayscale cycle and send the next data update
mjr 26:cb71c4af2912 404 void reset()
mjr 26:cb71c4af2912 405 {
mjr 30:6e9902f06f48 406 // start the blanking cycle
mjr 30:6e9902f06f48 407 startBlank();
mjr 33:d832bcab089e 408
mjr 40:cc0d9814522b 409 // if we have pending grayscale data, update the DMA data
mjr 40:cc0d9814522b 410 /*$$$bool*/ newGSData = false;
mjr 48:058ace2aed1d 411 uint8_t *dmasrc;
mjr 40:cc0d9814522b 412 if (dirty)
mjr 40:cc0d9814522b 413 {
mjr 40:cc0d9814522b 414 // swap live and working buffers
mjr 40:cc0d9814522b 415 uint8_t *tmp = livebuf;
mjr 40:cc0d9814522b 416 livebuf = workbuf;
mjr 40:cc0d9814522b 417 workbuf = tmp;
mjr 40:cc0d9814522b 418
mjr 48:058ace2aed1d 419 // Set the new DMA source. Set the starting address in the
mjr 48:058ace2aed1d 420 // DMA controller to the *second* byte, since we have to send
mjr 48:058ace2aed1d 421 // the first byte via the CPU instead of DMA - this is required
mjr 48:058ace2aed1d 422 // because of a problematic interaction that occurs if the DMA
mjr 48:058ace2aed1d 423 // controller initiates the transfer; the problem is outlined
mjr 48:058ace2aed1d 424 // in the KL25Z hardware reference manual.
mjr 48:058ace2aed1d 425 dmasrc = livebuf;
mjr 48:058ace2aed1d 426 sdma.source(livebuf + 1, true, 8);
mjr 40:cc0d9814522b 427
mjr 40:cc0d9814522b 428 // no longer dirty
mjr 40:cc0d9814522b 429 dirty = false;
mjr 40:cc0d9814522b 430
mjr 40:cc0d9814522b 431 // note the new data
mjr 40:cc0d9814522b 432 newGSData = true;
mjr 40:cc0d9814522b 433 }
mjr 48:058ace2aed1d 434 else //$$$
mjr 48:058ace2aed1d 435 {
mjr 48:058ace2aed1d 436 // send all 1 bits for diagnostics - in case of XLAT
mjr 48:058ace2aed1d 437 // glitches, this turns all outputs on, which makes the
mjr 48:058ace2aed1d 438 // glitch immediately apparent
mjr 48:058ace2aed1d 439 static uint8_t dummy = 0xff;
mjr 48:058ace2aed1d 440 dmasrc = &dummy;
mjr 48:058ace2aed1d 441 sdma.source(&dummy, false, 8);
mjr 48:058ace2aed1d 442 } //$$$
mjr 48:058ace2aed1d 443
mjr 48:058ace2aed1d 444 #ifndef DATA_UPDATE_INSIDE_BLANKING
mjr 48:058ace2aed1d 445 // We're configured to send new GS data during the GS cycle,
mjr 48:058ace2aed1d 446 // not during the blanking interval, so end the blanking
mjr 48:058ace2aed1d 447 // interval now, before we start sending the new data. Ending
mjr 48:058ace2aed1d 448 // the blanking interval starts the new GS cycle.
mjr 33:d832bcab089e 449 //
mjr 48:058ace2aed1d 450 // (For the other configuration, we send GS data during the
mjr 48:058ace2aed1d 451 // blanking interval, so in that case we DON'T end the blanking
mjr 48:058ace2aed1d 452 // interval yet - we defer that until the end-of-DMA interrupt
mjr 48:058ace2aed1d 453 // handler, which fires after the GS data send has completed.)
mjr 33:d832bcab089e 454 endBlank();
mjr 48:058ace2aed1d 455 #endif
mjr 48:058ace2aed1d 456
mjr 40:cc0d9814522b 457 // send out the DMA contents if we have new data
mjr 48:058ace2aed1d 458 //$$$if (newGSData)
mjr 48:058ace2aed1d 459 {
mjr 48:058ace2aed1d 460 // The hardware reference manual says that the CPU has to send
mjr 48:058ace2aed1d 461 // the first byte of a DMA transfer explicitly. This is required
mjr 48:058ace2aed1d 462 // to avoid a hardware deadlock condition that happens due to
mjr 48:058ace2aed1d 463 // a timing interaction between the SPI and DMA controllers.
mjr 48:058ace2aed1d 464 // The correct sequence per the manual is:
mjr 48:058ace2aed1d 465 //
mjr 48:058ace2aed1d 466 // - set up the DMA registers, starting at the 2nd byte to send
mjr 48:058ace2aed1d 467 // - write the first byte directly to the SPI data register
mjr 48:058ace2aed1d 468 // - enable TXDMAE in the SPI controller
mjr 48:058ace2aed1d 469 sdma.start(dmalen - 1);
mjr 48:058ace2aed1d 470 spi.write(dmasrc[0]);
mjr 48:058ace2aed1d 471 SPI0->C2 |= SPI_C2_TXDMAE_MASK;
mjr 48:058ace2aed1d 472 }
mjr 30:6e9902f06f48 473 }
mjr 30:6e9902f06f48 474
mjr 30:6e9902f06f48 475 void startBlank()
mjr 30:6e9902f06f48 476 {
mjr 30:6e9902f06f48 477 // turn off the grayscale clock, and assert BLANK to end the grayscale cycle
mjr 30:6e9902f06f48 478 gsclk.write(0);
mjr 40:cc0d9814522b 479 blank = 0; // for a slight delay - chip requires 20ns GSCLK up to BLANK up
mjr 30:6e9902f06f48 480 blank = 1;
mjr 30:6e9902f06f48 481 }
mjr 26:cb71c4af2912 482
mjr 33:d832bcab089e 483 void endBlank()
mjr 30:6e9902f06f48 484 {
mjr 33:d832bcab089e 485 // if we've sent new grayscale data since the last blanking
mjr 33:d832bcab089e 486 // interval, latch it by asserting XLAT
mjr 33:d832bcab089e 487 if (needXlat)
mjr 30:6e9902f06f48 488 {
mjr 26:cb71c4af2912 489 // latch the new data while we're still blanked
mjr 26:cb71c4af2912 490 xlat = 1;
mjr 26:cb71c4af2912 491 xlat = 0;
mjr 33:d832bcab089e 492 needXlat = false;
mjr 26:cb71c4af2912 493 }
mjr 26:cb71c4af2912 494
mjr 40:cc0d9814522b 495 // End the blanking interval and restart the grayscale clock. Note
mjr 40:cc0d9814522b 496 // that we keep the blanking on if the chips are globally disabled.
mjr 40:cc0d9814522b 497 blank = enabled ? 0 : 1;
mjr 26:cb71c4af2912 498 gsclk.write(.5);
mjr 26:cb71c4af2912 499
mjr 26:cb71c4af2912 500 // set up the next blanking interrupt
mjr 38:091e511ce8a0 501 resetTimer.attach(this, &TLC5940::reset, (1.0/GSCLK_SPEED)*4096.0);
mjr 26:cb71c4af2912 502 }
mjr 26:cb71c4af2912 503
mjr 30:6e9902f06f48 504 // Interrupt handler for DMA completion. The DMA controller calls this
mjr 30:6e9902f06f48 505 // when it finishes with the transfer request we set up above. When the
mjr 30:6e9902f06f48 506 // transfer is done, we simply end the blanking cycle and start a new
mjr 30:6e9902f06f48 507 // grayscale cycle.
mjr 30:6e9902f06f48 508 void dmaDone()
mjr 30:6e9902f06f48 509 {
mjr 48:058ace2aed1d 510 // disable DMA triggering in the SPI controller until we set
mjr 48:058ace2aed1d 511 // up the next transfer
mjr 48:058ace2aed1d 512 SPI0->C2 &= ~SPI_C2_TXDMAE_MASK;
mjr 48:058ace2aed1d 513
mjr 33:d832bcab089e 514 // mark that we need to assert XLAT to latch the new
mjr 33:d832bcab089e 515 // grayscale data during the next blanking interval
mjr 40:cc0d9814522b 516 needXlat = newGSData;//$$$ true;
mjr 33:d832bcab089e 517
mjr 33:d832bcab089e 518 #if DATA_UPDATE_INSIDE_BLANKING
mjr 33:d832bcab089e 519 // we're doing the gs update within the blanking cycle, so end
mjr 33:d832bcab089e 520 // the blanking cycle now that the transfer has completed
mjr 33:d832bcab089e 521 endBlank();
mjr 33:d832bcab089e 522 #endif
mjr 30:6e9902f06f48 523 }
mjr 30:6e9902f06f48 524
mjr 26:cb71c4af2912 525 };
mjr 26:cb71c4af2912 526
mjr 26:cb71c4af2912 527 #endif