antimo angelino
/
Drone_F3
LSM9DS1 i2c
LSM9DS1.cpp
- Committer:
- antimo8@alice.it
- Date:
- 2018-07-08
- Revision:
- 2:bf33a982a078
File content as of revision 2:bf33a982a078:
/* * LSM9DS1_Sensor.c * * Created: 05/01/2015 19:49:04 * Author: speirano */ //#include "Wire.h" #include "LSM9DS1Reg.h" #include "LSM9DS1.h" #include "mbed.h" float a_lsb_sentivity = A_LSB_SENSIT_2MG; // FC[1:0] register set to 0 inline float LSM9DS1_get_a_lsb_sensitivity(void) { return a_lsb_sentivity; } float g_lsb_sentivity = G_LSB_SENSIT_245MDPS; // FC[1:0] register set to 0 inline float LSM9DS1_get_g_lsb_sentivity(void) { return g_lsb_sentivity; } float m_lsb_sentivity = M_LSB_SENSIT_4MG; // FC[1:0] register set to 0 inline float LSM9DS1_get_m_lsb_sentivity(void) { return m_lsb_sentivity; } // Read a single byte from addressToRead and return it as a byte uint8_t LSM9DS1::readRegister(uint8_t slaveAddress, uint8_t regToRead) {/* Wire.beginTransmission(slaveAddress); Wire.write(regToRead); Wire.endTransmission(false); //endTransmission but keep the connection active Wire.requestFrom(slaveAddress, 1); //Ask for 1 byte, once done, bus is released by default while(!Wire.available()) ; //Wait for the data to come back return Wire.read(); //Return this one byte*/ return 0; //FOR TEST } // Writes a single byte (dataToWrite) into regToWrite bool LSM9DS1::writeRegister(uint8_t slaveAddress, uint8_t regToWrite, uint8_t dataToWrite) {/* uint8_t errorNo; Wire.beginTransmission(slaveAddress); if (!Wire.write(regToWrite)) { return false; } if (!Wire.write(dataToWrite)) { return false; } errorNo = Wire.endTransmission(); //Stop transmitting return (errorNo == 0);*/ return 0; //FOR TEST } LSM9DS1::LSM9DS1(unsigned int address) : _address(address) { _ready_reg = 0; _status_reg = 0; _x = 0; _y = 0; _z = 0; } bool LSM9DS1::readInternal(unsigned char high_reg, unsigned char low_reg, int *value) { uint16_t data = 0; unsigned char read = 0; int16_t signed_data = 0; for (;;) { read = readRegister(addr(), _status_reg); if (read & _ready_reg) { read = readRegister(addr(), low_reg); data = read; // LSB read = readRegister(addr(), high_reg); data |= read << 8; // MSB signed_data = data; *value = signed_data; return true; } else { wait_ms (1); } } return false; } /*****************************************************************************/ /* Accelerometer / Gyroscope */ /*****************************************************************************/ LSM9DS1_A::LSM9DS1_A(void) : LSM9DS1(LSM9DS1_AG_ADDRESS) { _ready_reg = AG_ACCELEROMETER_READY; _status_reg = AG_STATUS_REG; } bool LSM9DS1_A::begin(void) { uint8_t data; data = readRegister(addr(), AG_WHO_AM_I); if (data == AG_WHO_AM_I_RETURN){ if (activate()){ return true; } } return false; } bool LSM9DS1_A::activate(void) { uint8_t data; data = readRegister(addr(), AG_CTRL_REG1_G); //data |= POWER_UP; data |= AG_ODR_SET; writeRegister(addr(), AG_CTRL_REG1_G, data); return true; } bool LSM9DS1_A::deactivate(void) { uint8_t data; data = readRegister(addr(), AG_CTRL_REG1_G); data &= ~AG_ODR_SET; writeRegister(addr(), AG_CTRL_REG1_G, data); return true; } int LSM9DS1_A::readX() { int data = 0; if (readInternal(AG_ACC_X_H, AG_ACC_X_L, &data)) { _x = data; } // Decode Accel x-axis [mdps measurement unit] return (a_lsb_sentivity * _x); } int LSM9DS1_A::readY() { int data = 0; if (readInternal(AG_ACC_Y_H, AG_ACC_Y_L, &data)) { _y = data; } // Decode Accel y-axis [mdps measurement unit] return (a_lsb_sentivity * _y); } int LSM9DS1_A::readZ() { int data = 0; if (readInternal(AG_ACC_Z_H, AG_ACC_Z_L, &data)) { _z = data; } // Decode Accel z-axis [mdps measurement unit] return (a_lsb_sentivity * _z); } LSM9DS1_G::LSM9DS1_G(void) : LSM9DS1(LSM9DS1_AG_ADDRESS) { _ready_reg = AG_GYROSCOPE_READY; _status_reg = AG_STATUS_REG; } bool LSM9DS1_G::begin(void) { uint8_t data; data = readRegister(addr(), AG_WHO_AM_I); if (data == AG_WHO_AM_I_RETURN){ if (activate()){ return true; } } return false; } bool LSM9DS1_G::activate(void) { uint8_t data; data = readRegister(addr(), AG_CTRL_REG1_G); //data |= POWER_UP; data |= AG_ODR_SET; writeRegister(addr(), AG_CTRL_REG1_G, data); return true; } bool LSM9DS1_G::deactivate(void) { uint8_t data; data = readRegister(addr(), AG_CTRL_REG1_G); data &= ~AG_ODR_SET; writeRegister(addr(), AG_CTRL_REG1_G, data); return true; } int LSM9DS1_G::readX() { int data = 0; if (readInternal(AG_GYR_X_H, AG_GYR_X_L, &data)) { _x = data; } // Decode Gyroscope x-axis [mdps measurement unit] return (g_lsb_sentivity * _x); } int LSM9DS1_G::readY() { int data = 0; if (readInternal(AG_GYR_Y_H, AG_GYR_Y_L, &data)) { _y = data; } // Decode Gyroscope y-axis [mdps measurement unit] return (g_lsb_sentivity * _y); } int LSM9DS1_G::readZ() { int data = 0; if (readInternal(AG_GYR_Z_H, AG_GYR_Z_L, &data)) { _z = data; } // Decode Gyroscope z-axis [mdps measurement unit] return (g_lsb_sentivity * _z); } /*****************************************************************************/ /* Magnetometer */ /*****************************************************************************/ LSM9DS1_M::LSM9DS1_M(void) : LSM9DS1(LSM9DS1_M_ADDRESS) { _ready_reg = M_ZYX_AXIS_READY; _status_reg = M_STATUS_REG; } bool LSM9DS1_M::begin(void) { uint8_t data; data = readRegister(addr(), M_WHO_AM_I); if (data == M_WHO_AM_I_RETURN){ if (activate()){ return true; } } return false; } bool LSM9DS1_M::activate(void) { uint8_t data; data = readRegister(addr(), M_CTRL_REG3_G); //data |= POWER_UP; //data |= 0x21; data &= ~M_OPER_MODE_DIS; //data &= (0xFC); writeRegister(addr(), M_CTRL_REG3_G, data); return true; } bool LSM9DS1_M::deactivate(void) { uint8_t data; data = readRegister(addr(), M_CTRL_REG3_G); //data |= POWER_UP; //data |= 0x21; data |= M_OPER_MODE_DIS; writeRegister(addr(), M_CTRL_REG3_G, data); return true; } int LSM9DS1_M::readX() { int data = 0; if (readInternal(M_X_H, M_X_L, &data)) { _x = data; } // Decode magnetic x-axis [mgauss measurement unit] return (m_lsb_sentivity * _x); } int LSM9DS1_M::readY() { int data = 0; if (readInternal(M_Y_H, M_Y_L, &data)) { _y = data; } // Decode magnetic y-axis [mgauss measurement unit] return (m_lsb_sentivity * _y); } int LSM9DS1_M::readZ() { int data = 0; if (readInternal(M_Z_H, M_Z_L, &data)) { _z = data; } // Decode magnetic z-axis [mgauss measurement unit] return (m_lsb_sentivity * _z); } LSM9DS1_A smeAccelerometer; LSM9DS1_M smeMagnetic; LSM9DS1_G smeGyroscope;