football_project_wo_output

Dependencies:   mbed

Fork of football_project by MZJ

main.cpp

Committer:
elmbed
Date:
2015-12-14
Revision:
23:26f27c462976
Parent:
19:afcbb425b3cf
Child:
24:ff54dec20f55

File content as of revision 23:26f27c462976:

/*
 * TA test
 *
 *  Updated for New TA Baseboard (rev Aug-Nov 2015.)
 *
 *  TODO maybe have a mode where the serial port I/O can be swapped,
 *   such that what the nRF generates is sent out the serial port,
 *   and what comes in the serial port goes into the nRF.
 *   Maybe could use the now-unused CTS pin for that.
 *
 *   Using
 *     rev 327 of BLE_API  
 *     rev 102 of nRF51822   w/ modification--See below
 *     rev  97 of mbed lib
 *       corresponding to:
 *         rev 493 of mbed-src   w/ modification to targets/hal/TARGET_NORDIC/TARGET_MCU_NRF51822/serial_api.c
 *                                so things compile properly.*
 *        * Now using $Sub$$UART0_IRQHandler to override UART0_IRQHandler without needing to use lib source.
 *
 *   Changed
 *     nRF51822/nordic/pstorage_platform.h  PSTORAGE_MIN_BLOCK_SIZE  changed from 0x010 to 4.
 */

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <cstdarg>
#include <cstdio>
#include "mbed.h"
// #include "rtos.h"
#include "BLEDevice.h"

#include "DFUService.h"
#include "UARTService.h"
#include "DeviceInformationService.h"
#include "BatteryService.h"

#include "MTSSerialFlowControl.h"
#include "PhoneAppIO.h"

#include "types.h"
#include "TA.h"

#define NEED_CONSOLE_OUTPUT 1 /* Set this if you need debug messages on the console;
                               * it will have an impact on code-size and power consumption. */

#define LOOPBACK_MODE       0  // Loopback mode

#if NEED_CONSOLE_OUTPUT
#define DEBUG(...) { printf(__VA_ARGS__); }
#else
#define DEBUG(...) /* nothing */
#endif /* #if NEED_CONSOLE_OUTPUT */

void loop();
void setup();
void getRadioInput(char *ibuffer, int size);

#define BLENANO  0  // BLE Nano vs. TA New Baseboard (rev Aug-Nov 2015.)

#if BLENANO
#define SERTX  USBTX
#define SERRX  USBRX
#else  // Same RTS pin used by all (P0_08) and unused CTS (P0_10)
#define SERTX  P0_18
#define SERRX  P0_17
#endif

static Timer tmr;

unsigned long millis()
{
    return tmr.read_ms();
}

unsigned long micros()
{
    return tmr.read_us();
}

extern "C"
{
#include "softdevice_handler.h"  // Attempt to get pstorage enqueued cmd callbacks.
#include "app_timer.h"
#include "pstorage.h"

//    void My_UART0_IRQHandler();

    void pin_mode( PinName, PinMode );
}

// DigitalOut rts( RTS_PIN_NUMBER );
DigitalIn cts( CTS_PIN_NUMBER, PullDown );  // We'll use as a mode switch for serial data source.  TODO

// Check if we should swap serial Rx/Tx for early rev of "Little Brain"
DigitalIn trSwp( P0_30, PullUp );

// Wait to settle.
int foo = (wait( 0.1 ), 0);

// Not using "LED" or "LED1" because target NRF51822 for FOTA uses different pins.
static DigitalOut led0( P0_19, 1 );           // TA New Baseboard  LED High=On / Buzzer Low=En ("STATUS")  (OK on Nano: LED Low=On)
                                              // Note: TA New Baseboard LED off only if Buzzer is sounding.
static DigitalOut led1( P0_21, 0 );           // TA New Baseboard  High=On  (OK on Nano: NC)
DigitalOut led2( P0_22, 1 );                  // TA New Baseboard  High=On  (OK on Nano: NC)

// DigitalOut led1( P0_3,  0 );                  // TA Baseboard  High=On  (OK on Nano: Alt RxD)
// DigitalOut led1( (trSwp ? P0_4 : P0_3), 0 );  // TA Baseboard  High=On  (And don't use P0_4 on Nano)

//DigitalOut buzz( P0_20, 1 );                  // TA New Baseboard  Low=On  (OK on Nano: NC)

// App timer, app scheduler, and pstorage are already setup by bootloader.

static BLEDevice  ble;


// Note:  From the datasheet:
//  PSELRXD, PSELRTS, PSELTRTS and PSELTXD must only be configured when the UART is disabled.
// But a version of serial_init() erroneously enabled the uart before the setting of those,
//  which messed up flow control.  Apparently the setting is ONCE per ON mode.  ARGH!
//  So we made our own versions of Serial and SerialBase (MySerial and MySerialBase)
//  to not use serial_init() in serial_api.c, so flow control is setup correctly *
//  MTSSerial now uses our MySerial instead of Serial, and now uses hw flow control by default *
//  [* We can't change the uart interrupt vector, so we comment-out the handler in
//     serial_api.c, and rebuild the mbed lib for low-level hw flow control to work.] - No need now.
//  * Now using $Sub$$UART0_IRQHandler to override UART0_IRQHandler without needing to use lib source.
//    NVIC_SetVector( UART0_IRQn, (uint32_t)My_UART0_IRQHandler );  // Might have worked--No need.
//
// MTSSerialFlowControl uses "manual" (non-hardware-low-level) flow control based on its
//  internal buffer--Rx servicing usually is fast enough not to need hw flow control, so it's okay.
//
// mts::MTSSerialFlowControl pcfc( (trSwp ? SERRX : SERTX), (trSwp ? SERTX : SERRX), RTS_PIN_NUMBER, CTS_PIN_NUMBER, 384, 2688 );
//mts::MTSSerial pcfc( (trSwp ? SERRX : SERTX), (trSwp ? SERTX : SERRX), 128, 64, RTS_PIN_NUMBER, NC );  // 256, 1280  // 256, 2560

uint8_t txPayload[TXRX_BUF_LEN] = { 0 };


char deviceName[6];  // "TAF00";
Gap::address_t   macAddr;
Gap::addr_type_t *pAdType;
static const uint16_t uuid16_list[] = { GattService::UUID_DEVICE_INFORMATION_SERVICE,
                                        GattService::UUID_BATTERY_SERVICE };
static const uint8_t  batt_and_id[] = { GattService::UUID_BATTERY_SERVICE & 0xff,
                                        GattService::UUID_BATTERY_SERVICE >> 8,
                                        99,          // Batt level TODO
                                        'T', 'X' };  // Custom ID trick

UARTService *uartServicePtr;
PhoneAppIO  *phoneP;

// Buffer for holding data from the phone
// to the device
#define PHTODEV_BUF_LEN    200  /**/
/// static char phoneToDev[200] = {0};
static char phoneToDev[PHTODEV_BUF_LEN] = {0};

/// // Current position in the buffer
/// static int phoneToDevPos = 0;

extern TA ta;

extern void radio_init();
extern void radio_loop();

// True when connected to a phone
bool connected = false;

void connectionCallback( Gap::Handle_t, Gap::addr_type_t peerAddrType,
                         const Gap::address_t peerAddr, const Gap::ConnectionParams_t *connParams )
{
    connected = true;

    // DEBUG( "Connected!\n\r" );
}

void disconnectionCallback( Gap::Handle_t handle, Gap::DisconnectionReason_t reason )
{
    connected = false;

    // DEBUG( "Disconnected!\n\r" );
    // DEBUG( "Restarting the advertising process\n\r" );
    ble.startAdvertising();
    ta.post_color(0);
}

bool updateCharacteristic( GattAttribute::Handle_t handle, const uint8_t *data, uint16_t bytesRead )
{
    ble_error_t err = ble.updateCharacteristicValue( handle, data, bytesRead );

    if( (err == BLE_ERROR_BUFFER_OVERFLOW) ||
        (err == BLE_ERROR_PARAM_OUT_OF_RANGE ) )
    {
      // pcfc.printf( "\r\nBLE %d!  ", err );

    } else if ( err == BLE_STACK_BUSY )
      {
          // Common error when pumping data.
      }

    return  (err != BLE_ERROR_NONE);
}

/// /* Writes the string given to the phone.
///  *
/// * @param *data - the string to send.
/// */
/***
static void writeToPhoneImpl(char *data)
{
    if (phoneP != NULL)
    {
       for (int i = 0; i < strlen(data); ++i)
       {
            phoneP->putchar(data[i]);
            
            // If we don't call maybeHandleWrite all hell breaks loose and 
            // the app crashes. :(
            if (i != 0 && i % 10 == 0)
            { 
                int counter = 0;
                while(phoneP->maybeHandleWrite() == 0 && ++counter < 20)
                { 
                    wait_us(1);
                }
            }
        }
        
        phoneP->maybeHandleWrite();
    }
}
***/

/// static char wtp_buff[150] = {0};
extern "C" void writeToPhone(char *format, ...)
{
    va_list arg;
    va_start(arg, format );
    
///    vsnprintf(wtp_buff, sizeof(wtp_buff), format, arg);
/**/phoneP->vprintf( format, arg );

///    writeToPhoneImpl(wtp_buff);    

/**/// Also write same to serial port... TODO
/**/ // pcfc.vprintf( format, arg );

    va_end(arg);
}

/**/ // Byte bits to ASCII - Use until we convert protocol to ASCII-hex.
extern "C" void writeBitsToPhone( uint8_t byte, uint8_t minbits )
{
    static char ascbits[9] = { 0 };
    int pos = 0;
    if( 0 == minbits )  minbits = 1;

    uint16_t ibyt = byte & 0xFF;
    bool leading0 = true;

    for( short b=7; b >= 0; b-- )
    {
        ibyt<<=1;
        if( ibyt & 0x100 )
        {
            leading0 = false;
            ascbits[pos++] = '1';

        } else if( !leading0 || (b < minbits) )
          {
              ascbits[pos++] = '0';
          }
    }
    ascbits[pos] = '\0';

    writeToPhone( "%s", ascbits );
}

void onDataWritten( const GattCharacteristicWriteCBParams *params )
{
    if( phoneP != NULL )
    {
        uint16_t bytesRead = phoneP->maybeHandleRead( params );  // Also writes to txPayload
        
        if( 0 != bytesRead )
        {
///            memcpy(phoneToDev+phoneToDevPos, txPayload, bytesRead);
///            phoneToDevPos += bytesRead;

          /*
            DEBUG( "received %u bytes\n\r", bytesRead );

            // Also write to serial port...
//            pcfc.printf( "From app: " );
            pcfc.write( (char *)txPayload, bytesRead );
//            pcfc.printf( "\r\n" );
          */

            return;
        }
    }
}

void onDataSent( unsigned count )
{
}

void toPhoneChk( void )
{
    if( phoneP != NULL )
    {
      /*
        char ch;
        // Get any data from serial port buffer--Full lines if avail--Last line after >= 20 chars.
        for( int cnt=1; 0 != pcfc.atomicRead( ch ); cnt++ )
        {
        /// For from-serial straight to-phone.
        /// if( 0 > phoneP->putchar( ch ) )
        /// {
        ///     pcfc.printf( " * " );
        ///     break;
        /// }

            // For from-serial inject-to-dev as-if from phone.          
            phoneP->injectHandleRead( &ch, 1 );

            if( (cnt >= 20) && ('\n' == ch) )  break;
        }
      */
        // Write to outgoing characteristic if anything is pending.
        if( 0 != phoneP->maybeHandleWrite() )
        {
            // pcfc.printf( "ToPhoneHandler \r\n" );
        }
    }
}
/*
static uint32_t boot_cnt_data = 0;
static uint16_t data_block    = 9*20 +75;   // Last block -- Use for app-start count.
static uint16_t data_size     = 4;
static uint16_t data_offset   = 0;          // 12 for 16-byte blocks.
static bool     data_loaded   = false;
static bool     data_cleared  = false;
static bool     data_stored   = false;
static pstorage_handle_t pstorage_id;

static uint32_t pstorage_read_test()
{
    uint32_t err_code;

    pstorage_handle_t p_block_id;

    do
    {
        err_code = pstorage_block_identifier_get( &pstorage_id, data_block, &p_block_id );
        if( NRF_SUCCESS != err_code )  break;

        err_code = pstorage_load( (uint8_t *)&boot_cnt_data, &p_block_id, data_size, data_offset );
        if( NRF_SUCCESS != err_code )  break;

    } while( 0 );

    return  err_code;
}
static uint32_t pstorage_clear_test()
{
    uint32_t err_code;

    pstorage_handle_t p_block_id;

    do
    {
        err_code = pstorage_block_identifier_get( &pstorage_id, data_block, &p_block_id );
        if( NRF_SUCCESS != err_code )  break;

        err_code = pstorage_clear( &p_block_id, PSTORAGE_MIN_BLOCK_SIZE );
        if( NRF_SUCCESS != err_code )  break;

    } while( 0 );

    return  err_code;
}
static uint32_t pstorage_write_test()
{
    uint32_t err_code;

    pstorage_handle_t p_block_id;

    do
    {
        err_code = pstorage_block_identifier_get( &pstorage_id, data_block, &p_block_id );
        if( NRF_SUCCESS != err_code )  break;

        err_code = pstorage_store( &p_block_id, (uint8_t *)&boot_cnt_data, data_size, data_offset );

    } while( 0 );

    return  err_code;
}

static void pstorage_cb_handler( pstorage_handle_t *handle, uint8_t op_code, uint32_t result, uint8_t *p_data, uint32_t data_len )
{
    switch( op_code )
    {
      case PSTORAGE_LOAD_OP_CODE:
        if( NRF_SUCCESS == result )
        {
            // Load operation successful.
            data_loaded = true;  // Flag to signal load is done.

        } else
          {
              // Load operation failed.
              //pcfc.printf( "\r\nWarn: pstorage load operation error: %x\r\n", result );
          }
        break;       
      case PSTORAGE_UPDATE_OP_CODE:
      case PSTORAGE_STORE_OP_CODE:
        if( NRF_SUCCESS == result )
        {
            // Store operation successful.
            data_stored = true;  // Flag to signal store is done.

        } else
          {
              // Store operation failed.
              //pcfc.printf( "\r\nWarn: pstorage store operation error: %x\r\n", result );
          }
        // Source memory can now be reused or freed.
        break;
      case PSTORAGE_CLEAR_OP_CODE:
        if( NRF_SUCCESS == result )
        {
            // Clear operation successful.
            data_cleared = true;  // Flag to store to the same data area.

        } else
          {
              // Clear operation failed.
              //pcfc.printf( "\r\nWarn: pstorage clear operation error: %x\r\n", result );
          }
        break;
      //default:
        //pcfc.printf( "\r\nWarn: pstorage unknown op: %x  error: %x\r\n", op_code, result );
    }
}

static uint32_t pstorage_setup()
{
    pstorage_module_param_t pstorage_param;    

    // Setup pstorage with 9*20 +76 blocks of 4 bytes each.  (or 9*20/4 + 19  for 16 byte blocks)
    pstorage_param.block_size  = 4;         // Recommended to be >= 4 bytes.
    pstorage_param.block_count = 9*20 +76;  // 9 Sequences x 20 Stations  + 76 blocks to fill out to 1k.
    pstorage_param.cb          = pstorage_cb_handler;

    return  pstorage_register( &pstorage_param, &pstorage_id );
}
*/

void periodicCallback( void )
{
    static int foo;
    foo++;
//#if BLENANO
    led0 = !led0;
//#endif
    led1 = !led1;
    led2 = !led2;
//    buzz = (foo & 2)>>1;
//    rts  = !rts;
}

/*
void led_thread( void const *args )
{
    while( true )
    {
        led0 = !led0;
        led1 = !led1;
        Thread::wait( 1000 );
    }
}
*/


int main( void )
{
    Ticker ticker;
    ticker.attach( periodicCallback, 0.5 /*** 0.1 ***/ /* 1 */ );

  /*
    // Thread thread( led_thread );
  */

 /////pcfc.baud( 57600 );

  /*
    DEBUG( "Initialising the nRF51822\n\r" );
  */

    ble.init();
    
    ble.onConnection( connectionCallback );
    ble.onDisconnection( disconnectionCallback );
    ble.onDataWritten( onDataWritten );
    ble.onDataSent( onDataSent );

    /* setup advertising */
    ble.accumulateAdvertisingPayload( GapAdvertisingData::BREDR_NOT_SUPPORTED |
                                      GapAdvertisingData::LE_GENERAL_DISCOVERABLE );
                                      
    ble.setAdvertisingType( GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED );

    // Get MAC addr so we can create a device name using it.
    ble.getAddress( pAdType, macAddr );
    sprintf( deviceName, "T%02X%02X", macAddr[1], macAddr[0] );

    /////pcfc.printf( "\r\nNano nano!   I am \"%s\"\r\n", deviceName );

  /*
#if LOOPBACK_MODE
    pcfc.printf( "\r\nIn BLE Loopback mode.\r\n" );
#endif
  */

    uint32_t p_count;
    uint32_t pstorageErr = pstorage_init();  // This needs to be called, even though apparently called in bootloader--Check other stuff.
    pstorage_access_status_get( &p_count );

  /*
//    pcfc.printf( "\r\nInitial pstorage count: %d\r\n", p_count );

    if( NRF_SUCCESS != pstorageErr )  pcfc.printf( "\r\nWarn: pstorage init error: %x\r\n", pstorageErr );
      else
      {
          pstorageErr = pstorage_setup();
          if( NRF_SUCCESS != pstorageErr )  pcfc.printf( "\r\nWarn: pstorage setup error: %x\r\n", pstorageErr );
            else
            {
                pstorageErr = pstorage_read_test();
                if( NRF_SUCCESS != pstorageErr )  pcfc.printf( "\r\nWarn: pstorage read attempt error: %x\r\n", pstorageErr );
                  else
                  {
                      // In this test setup, we use the load callback to signal start to clear,
                      //  then we use the clear callback to signal start to write.
                  }
            }
      }
    */

    ble.accumulateAdvertisingPayload( GapAdvertisingData::COMPLETE_LOCAL_NAME,
                                      (const uint8_t *)deviceName, strlen(deviceName) );

// Moved to scan response packet to give more room in AD packet...
//    ble.accumulateAdvertisingPayload( GapAdvertisingData::INCOMPLETE_LIST_128BIT_SERVICE_IDS,
//                                      (const uint8_t *)UARTServiceUUID_reversed, sizeof(UARTServiceUUID_reversed) );

    ble.accumulateAdvertisingPayload( GapAdvertisingData::COMPLETE_LIST_16BIT_SERVICE_IDS,
                                      (uint8_t *)uuid16_list, sizeof( uuid16_list ) );
    ble.accumulateAdvertisingPayload( GapAdvertisingData::SERVICE_DATA,
                                      (uint8_t *)batt_and_id, sizeof( batt_and_id ) );  // Unused batt lev + "TX"

    ble.accumulateScanResponse( GapAdvertisingData::INCOMPLETE_LIST_128BIT_SERVICE_IDS,
                                (const uint8_t *)UARTServiceUUID_reversed, sizeof( UARTServiceUUID_reversed ) );

    ble.setAdvertisingInterval( Gap::MSEC_TO_ADVERTISEMENT_DURATION_UNITS( 200 ) );
    ble.startAdvertising();

    DeviceInformationService deviceInfo( ble, "TRX", "TrueAgility", "SN0001", "hw-rev1", "fw-rev1" );
    BatteryService battService( ble );

    /* Enable over-the-air firmware updates. Instantiating DFUService introduces a
     * control characteristic which can be used to trigger the application to
     * handover control to a resident bootloader. */
    DFUService dfu( ble );

    UARTService uartService( ble );
    uartServicePtr = &uartService;

    PhoneAppIO *phone = new PhoneAppIO( ble,
                                        uartServicePtr->getRXCharacteristicHandle(),
                                        uartServicePtr->getTXCharacteristicHandle() );

    phone->loopbackMode = LOOPBACK_MODE;
    phoneP = phone;
    
//    DigitalOut *buzzPin = new DigitalOut(p20);
//    *buzzPin = 1;
    setup();
    radio_init();
    tmr.start();
    
    // Main Loop
    while( true )  // for( uint32_t loop=1; ;loop++ )
    {
        ble.waitForEvent();

/**/    toPhoneChk();  // Write any pending data to phone.

      /*
        while( 0 <= phone.getchar() );  // Eat input.

//        if( !(loop % 50) )  phone.printf( "Post: %d\r\n", tmr.read_ms() );

        app_sched_execute();  // Attempt to get pstorage enqueued cmd callbacks.
      */

/***
        if (phoneToDevPos > 0)
        {
            getRadioInput(phoneToDev, phoneToDevPos ); 
            phoneToDevPos = 0;   
        }
***/

/**/    int bytes = MIN( PHTODEV_BUF_LEN, phoneP->readable() );
/**/
#ifdef MASTER    
    getRadioInput( phoneToDev, phoneP->read( phoneToDev, bytes, 1 ) );
#endif
        loop();
        //radio_loop();

/***
        if (connected)
        {
            phoneP->maybeHandleWrite(); 
        }

        while( 0 <= phone->getchar() );  // Eat input.
***/
    }
}

/**@brief Function for error handling, which is called when an error has occurred.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyze
 *          how your product is supposed to react in case of error.
 *
 * @param[in] error_code  Error code supplied to the handler.
 * @param[in] line_num    Line number where the handler is called.
 * @param[in] p_file_name Pointer to the file name.
 */
void $Sub$$app_error_handler( uint32_t error_code, uint32_t line_num, const uint8_t * p_file_name )
{
    // nrf_gpio_pin_set( ASSERT_LED_PIN_NO );
    //led1 = 1;

    // This call can be used for debug purposes during application development.
    // @note CAUTION: Activating this code will write the stack to flash on an error.
    //                This function should NOT be used in a final product.
    //                It is intended STRICTLY for development/debugging purposes.
    //                The flash write will happen EVEN if the radio is active, thus interrupting
    //                any communication.
    //                Use with care. Uncomment the line below to use.
    // ble_debug_assert_handler(error_code, line_num, p_file_name);

    // On assert, the system can only recover with a reset.
    NVIC_SystemReset();
}

/* EOF */