test
Fork of mbed-dev by
targets/TARGET_Realtek/TARGET_AMEBA/analogout_api.c
- Committer:
- AnnaBridge
- Date:
- 2017-06-21
- Revision:
- 168:e84263d55307
File content as of revision 168:e84263d55307:
/* mbed Microcontroller Library * Copyright (c) 2013-2016 Realtek Semiconductor Corp. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "objects.h" #include "analogout_api.h" #if CONFIG_DAC_EN #include "cmsis.h" #include "pinmap.h" #include <string.h> #define DAC_POSITIVE_FULL_SCALE 0x7E0 #define DAC_NEGATIVE_FULL_SCALE 0x820 /** \brief analogout_init:\n * to initialize DAC * * This function is mainly to initialize a DAC channel. * \para dac_t *: obj * \para PinName: pin */ void analogout_init(dac_t *obj, PinName pin) { uint32_t dac_idx; uint32_t DacTemp; PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)&(obj->DACpara); dac_idx = pin & 0x0F; /* Assign dac index */ pHalDacInitData->DACIdx = dac_idx; pHalDacInitData->DACEn = DAC_DISABLE; pHalDacInitData->DACDataRate = DAC_DATA_RATE_250K; pHalDacInitData->DACEndian = DAC_DATA_ENDIAN_LITTLE; pHalDacInitData->DACBurstSz = 10; pHalDacInitData->DACDbgSel = DAC_DBG_SEL_DISABLE; pHalDacInitData->DACDscDbgSel = DAC_DSC_DBG_SEL_DISABLE; pHalDacInitData->DACBPDsc = DAC_BYPASS_DSC_SEL_DISABLE; pHalDacInitData->DACDeltaSig = 0; pHalDacInitData->DACAnaCtrl0 = 0; pHalDacInitData->DACAnaCtrl1 = 0; pHalDacInitData->DACIntrMSK = DAC_FEATURE_DISABLED; /* DAC Function and Clock Enable*/ HalDACPinMuxInit(pHalDacInitData); HalDACInit8195a(pHalDacInitData); HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC_INTR_CTRL, (BIT_DAC_FIFO_FULL_EN | BIT_DAC_FIFO_OVERFLOW_EN | BIT_DAC_FIFO_STOP_EN | BIT_DAC__WRITE_ERROR_EN | BIT_DAC_DSC_OVERFLOW0_EN | BIT_DAC_DSC_OVERFLOW1_EN)); DBG_DAC_INFO("INTR MSK:%x\n", HAL_DAC_READ32(pHalDacInitData->DACIdx,REG_DAC_INTR_CTRL)); DacTemp = HAL_DAC_READ32(pHalDacInitData->DACIdx, REG_DAC_ANAPAR_DA1); DacTemp |= (BIT31); HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC_ANAPAR_DA1, DacTemp); DBG_DAC_INFO("REG_DAC_ANAPAR_DA1:%08x\n",HAL_DAC_READ32(pHalDacInitData->DACIdx, REG_DAC_ANAPAR_DA1)); DacTemp = HAL_DAC_READ32(pHalDacInitData->DACIdx, REG_DAC_CTRL); DacTemp |= BIT3; HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC_CTRL, DacTemp); DBG_DAC_INFO("REG_DAC_CTRL:%08x\n",DacTemp); pHalDacInitData->DACEn = DAC_ENABLE; HalDACEnableRtl8195a(pHalDacInitData); osDelay(6); //hardware needs some time to get ready } /** \brief analogout_free:\n * to free DAC * * This function is mainly to free a DAC channel. * \para dac_t *: obj */ void analogout_free(dac_t *obj) { PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)&(obj->DACpara); HalDACPinMuxDeInit(pHalDacInitData); pHalDacInitData->DACEn = DAC_DISABLE; HalDACEnableRtl8195a(pHalDacInitData); } /** \brief analogout_write:\n * to execute analogout_write * * This function is mainly to execute analog output and the value is a ratio. * The upper/lower bound of DAC register input value is defined by * DAC_XXXXX_FULL_SCALE. The parameter "value" of this function should be * transfered to register value. * * \para dac_t * : obj * \para float : value */ void analogout_write(dac_t *obj, float value) { uint32_t dactemp; uint16_t dacnegtemp; PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)&(obj->DACpara); if (value < 0.0f) { HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC0_FIFO_WR, 0x00000000); } else if (value > 1.0f) { dactemp = (DAC_POSITIVE_FULL_SCALE<<16) | DAC_POSITIVE_FULL_SCALE; HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC0_FIFO_WR, dactemp); } else { if (value >= 0.5) { dactemp = (uint32_t)((((value-0.5)/0.5) * (2^12)) * DAC_POSITIVE_FULL_SCALE); dactemp = dactemp / (2^12); dactemp = (dactemp<<16) | dactemp; HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC0_FIFO_WR, dactemp); } else { dacnegtemp = (DAC_NEGATIVE_FULL_SCALE & 0x7FF); dacnegtemp = ((~dacnegtemp) + 1) & 0x7FF; dactemp = (uint32_t)(((0.5-value)/0.5) * (2^12) * dacnegtemp); dactemp = dactemp / (2^12); dactemp = 0x1000 - dactemp; //change to 2's complement dactemp = (dactemp<<16) | dactemp; HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC0_FIFO_WR, dactemp); } } } /** \brief analogout_write_u16:\n * to execute analogout_write_u16 * * The register value of DAC input is a format of 2's complement. * The most maximum value of positive value drives DAC to output a voltage about 3.3V. * The most mimimum value of negative value drives DAC to output a voltage about 0. * And the middle value of 0x000 will drive DAC to output a voltage of half of max voltage. * * \para dac_t * : obj * \para float : value */ void analogout_write_u16(dac_t *obj, uint16_t value) { uint32_t dactemp; PHAL_DAC_INIT_DAT pHalDacInitData = (PHAL_DAC_INIT_DAT)&(obj->DACpara); /* To give a two point data */ dactemp = (value << 16) | value; HAL_DAC_WRITE32(pHalDacInitData->DACIdx, REG_DAC0_FIFO_WR, dactemp); } /** \brief analogout_read_u16:\n * to read back analog output value in float format * * This function is NOT available in rtl8195a hardware design. * It always returns a fixed value of 0.0; * \para dac_t * : obj */ float analogout_read(dac_t *obj) { return (float)0.0; } /** \brief analogout_read_u16:\n * to read back analog output register value * * This function is NOT available in rtl8195a hardware design. * It always returns a fixed value of 0xFFFF; * \para dac_t * : obj */ uint16_t analogout_read_u16(dac_t *obj) { return (uint16_t)0xFFFF; } #endif