test
Fork of mbed-dev by
targets/TARGET_Realtek/TARGET_AMEBA/serial_api.c
- Committer:
- AnnaBridge
- Date:
- 2017-11-08
- Revision:
- 178:d650f5d4c87a
- Parent:
- 168:e84263d55307
File content as of revision 178:d650f5d4c87a:
/* mbed Microcontroller Library * Copyright (c) 2013-2016 Realtek Semiconductor Corp. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rtl8195a.h" #include "objects.h" #include "serial_api.h" #if CONFIG_UART_EN #include "pinmap.h" #include <string.h> static const PinMap PinMap_UART_TX[] = { {PC_3, RTL_PIN_PERI(UART0, 0, S0), RTL_PIN_FUNC(UART0, S0)}, {PE_0, RTL_PIN_PERI(UART0, 0, S1), RTL_PIN_FUNC(UART0, S1)}, {PA_7, RTL_PIN_PERI(UART0, 0, S2), RTL_PIN_FUNC(UART0, S2)}, {PD_3, RTL_PIN_PERI(UART1, 1, S0), RTL_PIN_FUNC(UART1, S0)}, {PE_4, RTL_PIN_PERI(UART1, 1, S1), RTL_PIN_FUNC(UART1, S1)}, {PB_5, RTL_PIN_PERI(UART1, 1, S2), RTL_PIN_FUNC(UART1, S2)}, {PA_4, RTL_PIN_PERI(UART2, 2, S0), RTL_PIN_FUNC(UART2, S0)}, {PC_9, RTL_PIN_PERI(UART2, 2, S1), RTL_PIN_FUNC(UART2, S1)}, {PD_7, RTL_PIN_PERI(UART2, 2, S2), RTL_PIN_FUNC(UART2, S2)}, {PB_0, RTL_PIN_PERI(LOG_UART, 3, S0), RTL_PIN_FUNC(LOG_UART, S0)}, {NC, NC, 0} }; static const PinMap PinMap_UART_RX[] = { {PC_0, RTL_PIN_PERI(UART0, 0, S0), RTL_PIN_FUNC(UART0, S0)}, {PE_3, RTL_PIN_PERI(UART0, 0, S1), RTL_PIN_FUNC(UART0, S1)}, {PA_6, RTL_PIN_PERI(UART0, 0, S2), RTL_PIN_FUNC(UART0, S2)}, {PD_0, RTL_PIN_PERI(UART1, 1, S0), RTL_PIN_FUNC(UART1, S0)}, {PE_7, RTL_PIN_PERI(UART1, 1, S1), RTL_PIN_FUNC(UART1, S1)}, {PB_4, RTL_PIN_PERI(UART1, 1, S2), RTL_PIN_FUNC(UART1, S2)}, {PA_0, RTL_PIN_PERI(UART2, 2, S0), RTL_PIN_FUNC(UART2, S0)}, {PC_6, RTL_PIN_PERI(UART2, 2, S1), RTL_PIN_FUNC(UART2, S1)}, {PD_4, RTL_PIN_PERI(UART2, 2, S2), RTL_PIN_FUNC(UART2, S2)}, {PB_1, RTL_PIN_PERI(LOG_UART, 3, S0), RTL_PIN_FUNC(LOG_UART, S0)}, {NC, NC, 0} }; #define UART_NUM (3) #define SERIAL_TX_IRQ_EN 0x01 #define SERIAL_RX_IRQ_EN 0x02 #define SERIAL_TX_DMA_EN 0x01 #define SERIAL_RX_DMA_EN 0x02 static uint32_t serial_irq_ids[UART_NUM] = {0, 0, 0}; static uart_irq_handler irq_handler[UART_NUM]; static uint32_t serial_irq_en[UART_NUM]={0, 0, 0}; #ifdef CONFIG_GDMA_EN static uint32_t serial_dma_en[UART_NUM] = {0, 0, 0}; static HAL_GDMA_OP UartGdmaOp; #endif #ifdef CONFIG_MBED_ENABLED #include "log_uart_api.h" int stdio_uart_inited = 0; serial_t stdio_uart; log_uart_t stdio_uart_log; #endif static void SerialTxDoneCallBack(VOID *pAdapter); static void SerialRxDoneCallBack(VOID *pAdapter); void serial_init(serial_t *obj, PinName tx, PinName rx) { uint32_t uart_tx, uart_rx; uint32_t uart_sel; uint8_t uart_idx; PHAL_RUART_OP pHalRuartOp; PHAL_RUART_ADAPTER pHalRuartAdapter; #ifdef CONFIG_GDMA_EN PUART_DMA_CONFIG pHalRuartDmaCfg; PHAL_GDMA_OP pHalGdmaOp=&UartGdmaOp; #endif // Determine the UART to use (UART0, UART1, or UART3) uart_tx = pinmap_peripheral(tx, PinMap_UART_TX); uart_rx = pinmap_peripheral(rx, PinMap_UART_RX); uart_sel = pinmap_merge(uart_tx, uart_rx); uart_idx = RTL_GET_PERI_IDX(uart_sel); if (unlikely(uart_idx == (uint8_t)NC)) { DBG_UART_ERR("%s: Cannot find matched UART\n", __FUNCTION__); return; } #ifdef CONFIG_MBED_ENABLED else if(uart_idx == UART_3){ obj->index = UART_3; goto init_stdio; } #endif pHalRuartOp = &(obj->hal_uart_op); pHalRuartAdapter = &(obj->hal_uart_adp); if ((NULL == pHalRuartOp) || (NULL == pHalRuartAdapter)) { DBG_UART_ERR("%s: Allocate Adapter Failed\n", __FUNCTION__); return; } HalRuartOpInit((VOID*)pHalRuartOp); #ifdef CONFIG_GDMA_EN HalGdmaOpInit((VOID*)pHalGdmaOp); pHalRuartDmaCfg = &obj->uart_gdma_cfg; pHalRuartDmaCfg->pHalGdmaOp = pHalGdmaOp; pHalRuartDmaCfg->pTxHalGdmaAdapter = &obj->uart_gdma_adp_tx; pHalRuartDmaCfg->pRxHalGdmaAdapter = &obj->uart_gdma_adp_rx; pHalRuartDmaCfg->pTxDmaBlkList = &obj->gdma_multiblk_list_tx; pHalRuartDmaCfg->pRxDmaBlkList = &obj->gdma_multiblk_list_rx; _memset((void*)(pHalRuartDmaCfg->pTxHalGdmaAdapter), 0, sizeof(HAL_GDMA_ADAPTER)); _memset((void*)(pHalRuartDmaCfg->pRxHalGdmaAdapter), 0, sizeof(HAL_GDMA_ADAPTER)); _memset((void*)(pHalRuartDmaCfg->pTxDmaBlkList), 0, sizeof(UART_DMA_MULTIBLK)); _memset((void*)(pHalRuartDmaCfg->pRxDmaBlkList), 0, sizeof(UART_DMA_MULTIBLK)); #endif pHalRuartOp->HalRuartAdapterLoadDef(pHalRuartAdapter, uart_idx); pHalRuartAdapter->PinmuxSelect = RTL_GET_PERI_SEL(uart_sel); pHalRuartAdapter->BaudRate = 9600; pHalRuartAdapter->IrqHandle.Priority = 6; if (HalRuartInit(pHalRuartAdapter) != HAL_OK) { DBG_UART_ERR("serial_init Err!\n"); return; } pHalRuartOp->HalRuartRegIrq(pHalRuartAdapter); pHalRuartOp->HalRuartIntEnable(pHalRuartAdapter); #ifdef CONFIG_MBED_ENABLED init_stdio: // For stdio management if (uart_idx == STDIO_UART) { // default setting to 38400 if (stdio_uart_inited) return; log_uart_init(&stdio_uart_log, 38400, 8, ParityNone, 1); stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } #endif } void serial_free(serial_t *obj) { PHAL_RUART_ADAPTER pHalRuartAdapter; #ifdef CONFIG_GDMA_EN u8 uart_idx; PUART_DMA_CONFIG pHalRuartDmaCfg; #endif #ifdef CONFIG_MBED_ENABLED if(obj->index == UART_3){ log_uart_free(&stdio_uart_log); return; } #endif pHalRuartAdapter = &(obj->hal_uart_adp); HalRuartDeInit(pHalRuartAdapter); #ifdef CONFIG_GDMA_EN uart_idx = pHalRuartAdapter->UartIndex; pHalRuartDmaCfg = &obj->uart_gdma_cfg; if (serial_dma_en[uart_idx] & SERIAL_RX_DMA_EN) { HalRuartRxGdmaDeInit(pHalRuartDmaCfg); serial_dma_en[uart_idx] &= ~SERIAL_RX_DMA_EN; } if (serial_dma_en[uart_idx] & SERIAL_TX_DMA_EN) { HalRuartTxGdmaDeInit(pHalRuartDmaCfg); serial_dma_en[uart_idx] &= ~SERIAL_TX_DMA_EN; } #endif } void serial_baud(serial_t *obj, int baudrate) { #ifdef CONFIG_MBED_ENABLED if(obj->index == UART_3){ return; } #endif PHAL_RUART_ADAPTER pHalRuartAdapter; pHalRuartAdapter = &(obj->hal_uart_adp); pHalRuartAdapter->BaudRate = baudrate; HalRuartSetBaudRate((VOID*)pHalRuartAdapter); } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { #ifdef CONFIG_MBED_ENABLED if(obj->index == UART_3){ log_uart_format(&stdio_uart_log, data_bits, parity, stop_bits); return; } #endif PHAL_RUART_ADAPTER pHalRuartAdapter; pHalRuartAdapter = &(obj->hal_uart_adp); if (data_bits == 8) { pHalRuartAdapter->WordLen = RUART_WLS_8BITS; } else { pHalRuartAdapter->WordLen = RUART_WLS_7BITS; } switch (parity) { case ParityOdd: case ParityForced0: pHalRuartAdapter->Parity = RUART_PARITY_ENABLE; pHalRuartAdapter->ParityType = RUART_ODD_PARITY; break; case ParityEven: case ParityForced1: pHalRuartAdapter->Parity = RUART_PARITY_ENABLE; pHalRuartAdapter->ParityType = RUART_EVEN_PARITY; break; default: // ParityNone pHalRuartAdapter->Parity = RUART_PARITY_DISABLE; break; } if (stop_bits == 2) { pHalRuartAdapter->StopBit = RUART_STOP_BIT_2; } else { pHalRuartAdapter->StopBit = RUART_STOP_BIT_1; } HalRuartInit(pHalRuartAdapter); } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static void SerialTxDoneCallBack(VOID *pAdapter) { PHAL_RUART_ADAPTER pHalRuartAdapter = pAdapter; u8 uart_idx = pHalRuartAdapter->UartIndex; // Mask UART TX FIFO empty pHalRuartAdapter->Interrupts &= ~RUART_IER_ETBEI; HalRuartSetIMRRtl8195a (pHalRuartAdapter); if (irq_handler[uart_idx] != NULL) { irq_handler[uart_idx](serial_irq_ids[uart_idx], TxIrq); } } static void SerialRxDoneCallBack(VOID *pAdapter) { PHAL_RUART_ADAPTER pHalRuartAdapter = pAdapter; u8 uart_idx = pHalRuartAdapter->UartIndex; if (irq_handler[uart_idx] != NULL) { irq_handler[uart_idx](serial_irq_ids[uart_idx], RxIrq); } } void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { PHAL_RUART_ADAPTER pHalRuartAdapter; u8 uart_idx; pHalRuartAdapter = &(obj->hal_uart_adp); uart_idx = pHalRuartAdapter->UartIndex; irq_handler[uart_idx] = handler; serial_irq_ids[uart_idx] = id; pHalRuartAdapter->TxTDCallback = SerialTxDoneCallBack; pHalRuartAdapter->TxTDCbPara = (void*)pHalRuartAdapter; pHalRuartAdapter->RxDRCallback = SerialRxDoneCallBack; pHalRuartAdapter->RxDRCbPara = (void*)pHalRuartAdapter; } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { PHAL_RUART_ADAPTER pHalRuartAdapter; PHAL_RUART_OP pHalRuartOp; u8 uart_idx; pHalRuartAdapter = &(obj->hal_uart_adp); pHalRuartOp = &(obj->hal_uart_op); uart_idx = pHalRuartAdapter->UartIndex; if (enable) { if (irq == RxIrq) { pHalRuartAdapter->Interrupts |= RUART_IER_ERBI | RUART_IER_ELSI; serial_irq_en[uart_idx] |= SERIAL_RX_IRQ_EN; HalRuartSetIMRRtl8195a (pHalRuartAdapter); } else { serial_irq_en[uart_idx] |= SERIAL_TX_IRQ_EN; } pHalRuartOp->HalRuartRegIrq(pHalRuartAdapter); pHalRuartOp->HalRuartIntEnable(pHalRuartAdapter); } else { // disable if (irq == RxIrq) { pHalRuartAdapter->Interrupts &= ~(RUART_IER_ERBI | RUART_IER_ELSI); serial_irq_en[uart_idx] &= ~SERIAL_RX_IRQ_EN; } else { pHalRuartAdapter->Interrupts &= ~RUART_IER_ETBEI; serial_irq_en[uart_idx] &= ~SERIAL_TX_IRQ_EN; } HalRuartSetIMRRtl8195a (pHalRuartAdapter); if (pHalRuartAdapter->Interrupts == 0) { InterruptUnRegister(&pHalRuartAdapter->IrqHandle); InterruptDis(&pHalRuartAdapter->IrqHandle); } } } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { #ifdef CONFIG_MBED_ENABLED if(obj->index == UART_3){ return log_uart_getc(&stdio_uart_log); } #endif PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp); u8 uart_idx = pHalRuartAdapter->UartIndex; while (!serial_readable(obj)); return (int)((HAL_RUART_READ32(uart_idx, RUART_REV_BUF_REG_OFF)) & 0xFF); } void serial_putc(serial_t *obj, int c) { #ifdef CONFIG_MBED_ENABLED if(obj->index == UART_3){ log_uart_putc(&stdio_uart_log, (char)c); return; } #endif PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp); u8 uart_idx = pHalRuartAdapter->UartIndex; while (!serial_writable(obj)); HAL_RUART_WRITE32(uart_idx, RUART_TRAN_HOLD_REG_OFF, (c & 0xFF)); if (serial_irq_en[uart_idx] & SERIAL_TX_IRQ_EN) { // UnMask TX FIFO empty IRQ pHalRuartAdapter->Interrupts |= RUART_IER_ETBEI; HalRuartSetIMRRtl8195a (pHalRuartAdapter); } } int serial_readable(serial_t *obj) { #ifdef CONFIG_MBED_ENABLED if(obj->index == UART_3){ return log_uart_readable(&stdio_uart_log); } #endif PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp); u8 uart_idx = pHalRuartAdapter->UartIndex; if ((HAL_RUART_READ32(uart_idx, RUART_LINE_STATUS_REG_OFF)) & RUART_LINE_STATUS_REG_DR) { return 1; } else { return 0; } } int serial_writable(serial_t *obj) { #ifdef CONFIG_MBED_ENABLED if(obj->index == UART_3){ return log_uart_writable(&stdio_uart_log); } #endif PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp); u8 uart_idx = pHalRuartAdapter->UartIndex; if (HAL_RUART_READ32(uart_idx, RUART_LINE_STATUS_REG_OFF) & (RUART_LINE_STATUS_REG_THRE)) { return 1; } else { return 0; } } void serial_clear(serial_t *obj) { #ifdef CONFIG_MBED_ENABLED if(obj->index == UART_3){ log_uart_clear(&stdio_uart_log); return; } #endif PHAL_RUART_ADAPTER pHalRuartAdapter; pHalRuartAdapter = &(obj->hal_uart_adp); HalRuartResetTRxFifo((VOID *)pHalRuartAdapter); } void serial_break_set(serial_t *obj) { #ifdef CONFIG_MBED_ENABLED if(obj->index == UART_3){ log_uart_break_set(&stdio_uart_log); return; } #endif PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp); u8 uart_idx = pHalRuartAdapter->UartIndex; u32 RegValue; RegValue = HAL_RUART_READ32(uart_idx, RUART_LINE_CTL_REG_OFF); RegValue |= BIT_UART_LCR_BREAK_CTRL; HAL_RUART_WRITE32(uart_idx, RUART_LINE_CTL_REG_OFF, RegValue); } void serial_break_clear(serial_t *obj) { #ifdef CONFIG_MBED_ENABLED if(obj->index == UART_3){ log_uart_break_clear(&stdio_uart_log); return; } #endif PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp); u8 uart_idx = pHalRuartAdapter->UartIndex; u32 RegValue; RegValue = HAL_RUART_READ32(uart_idx, RUART_LINE_CTL_REG_OFF); RegValue &= ~(BIT_UART_LCR_BREAK_CTRL); HAL_RUART_WRITE32(uart_idx, RUART_LINE_CTL_REG_OFF, RegValue); } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } #if DEVICE_SERIAL_ASYNCH #endif #endif //#if CONFIG_UART_EN