test
Fork of mbed-dev by
targets/TARGET_NORDIC/TARGET_NRF5/us_ticker.c
- Committer:
- AnnaBridge
- Date:
- 2017-11-08
- Revision:
- 178:d650f5d4c87a
- Parent:
- 175:b96e65c34a4d
File content as of revision 178:d650f5d4c87a:
/* * Copyright (c) 2013 Nordic Semiconductor ASA * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA * integrated circuit in a product or a software update for such product, must reproduce * the above copyright notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be * used to endorse or promote products derived from this software without specific prior * written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary or object form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "us_ticker_api.h" #include "common_rtc.h" #include "app_util.h" #include "nrf_drv_common.h" #include "lp_ticker_api.h" #include "mbed_critical.h" #if defined(NRF52_ERRATA_20) #include "softdevice_handler.h" #endif //------------------------------------------------------------------------------ // Common stuff used also by lp_ticker and rtc_api (see "common_rtc.h"). // #include "app_util_platform.h" bool m_common_rtc_enabled = false; uint32_t volatile m_common_rtc_overflows = 0; __STATIC_INLINE void rtc_ovf_event_check(void) { if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW)) { nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW); // Don't disable this event. It shall occur periodically. ++m_common_rtc_overflows; } } #if defined(TARGET_MCU_NRF51822) void common_rtc_irq_handler(void) #else void COMMON_RTC_IRQ_HANDLER(void) #endif { rtc_ovf_event_check(); if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, US_TICKER_EVENT)) { us_ticker_irq_handler(); } #if DEVICE_LOWPOWERTIMER if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, LP_TICKER_EVENT)) { lp_ticker_irq_handler(); } #endif } // Function for fix errata 20: RTC Register values are invalid __STATIC_INLINE void errata_20(void) { #if defined(NRF52_ERRATA_20) if (!softdevice_handler_is_enabled()) { NRF_CLOCK->EVENTS_LFCLKSTARTED = 0; NRF_CLOCK->TASKS_LFCLKSTART = 1; while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0) { } } NRF_RTC1->TASKS_STOP = 0; #endif } void RTC1_IRQHandler(void); void common_rtc_init(void) { if (m_common_rtc_enabled) { return; } errata_20(); NVIC_SetVector(RTC1_IRQn, (uint32_t)RTC1_IRQHandler); // RTC is driven by the low frequency (32.768 kHz) clock, a proper request // must be made to have it running. // Currently this clock is started in 'SystemInit' (see "system_nrf51.c" // or "system_nrf52.c", respectively). nrf_rtc_prescaler_set(COMMON_RTC_INSTANCE, 0); nrf_rtc_event_clear(COMMON_RTC_INSTANCE, US_TICKER_EVENT); #if defined(TARGET_MCU_NRF51822) nrf_rtc_event_clear(COMMON_RTC_INSTANCE, OS_TICK_EVENT); #endif #if DEVICE_LOWPOWERTIMER nrf_rtc_event_clear(COMMON_RTC_INSTANCE, LP_TICKER_EVENT); #endif nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW); // Interrupts on all related events are enabled permanently. Particular // events will be enabled or disabled as needed (such approach is more // energy efficient). nrf_rtc_int_enable(COMMON_RTC_INSTANCE, #if DEVICE_LOWPOWERTIMER LP_TICKER_INT_MASK | #endif US_TICKER_INT_MASK | NRF_RTC_INT_OVERFLOW_MASK); // This event is enabled permanently, since overflow indications are needed // continuously. nrf_rtc_event_enable(COMMON_RTC_INSTANCE, NRF_RTC_INT_OVERFLOW_MASK); // All other relevant events are initially disabled. nrf_rtc_event_disable(COMMON_RTC_INSTANCE, #if defined(TARGET_MCU_NRF51822) OS_TICK_INT_MASK | #endif #if DEVICE_LOWPOWERTIMER LP_TICKER_INT_MASK | #endif US_TICKER_INT_MASK); nrf_drv_common_irq_enable(nrf_drv_get_IRQn(COMMON_RTC_INSTANCE), #ifdef NRF51 APP_IRQ_PRIORITY_LOW #elif defined(NRF52) || defined(NRF52840_XXAA) APP_IRQ_PRIORITY_LOWEST #endif ); nrf_rtc_task_trigger(COMMON_RTC_INSTANCE, NRF_RTC_TASK_START); m_common_rtc_enabled = true; } __STATIC_INLINE void rtc_ovf_event_safe_check(void) { core_util_critical_section_enter(); rtc_ovf_event_check(); core_util_critical_section_exit(); } uint32_t common_rtc_32bit_ticks_get(void) { uint32_t ticks; uint32_t prev_overflows; do { prev_overflows = m_common_rtc_overflows; ticks = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); // The counter used for time measurements is less than 32 bit wide, // so its value is complemented with the number of registered overflows // of the counter. ticks += (m_common_rtc_overflows << RTC_COUNTER_BITS); // Check in case that OVF occurred during execution of a RTC handler (apply if call was from RTC handler) // m_common_rtc_overflows might been updated in this call. rtc_ovf_event_safe_check(); // If call was made from a low priority level m_common_rtc_overflows might have been updated in RTC handler. } while (m_common_rtc_overflows != prev_overflows); return ticks; } uint64_t common_rtc_64bit_us_get(void) { uint32_t ticks = common_rtc_32bit_ticks_get(); // [ticks -> microseconds] return ROUNDED_DIV(((uint64_t)ticks) * 1000000, RTC_INPUT_FREQ); } void common_rtc_set_interrupt(uint32_t us_timestamp, uint32_t cc_channel, uint32_t int_mask) { // The internal counter is clocked with a frequency that cannot be easily // multiplied to 1 MHz, therefore besides the translation of values // (microsecond <-> ticks) a special care of overflows handling must be // taken. Here the 32-bit timestamp value is complemented with information // about current the system up time of (ticks + number of overflows of tick // counter on upper bits, converted to microseconds), and such 64-bit value // is then translated to counter ticks. Finally, the lower 24 bits of thus // calculated value is written to the counter compare register to prepare // the interrupt generation. uint64_t current_time64 = common_rtc_64bit_us_get(); // [add upper 32 bits from the current time to the timestamp value] uint64_t timestamp64 = us_timestamp + (current_time64 & ~(uint64_t)0xFFFFFFFF); // [if the original timestamp value happens to be after the 32 bit counter // of microsends overflows, correct the upper 32 bits accordingly] if (us_timestamp < (uint32_t)(current_time64 & 0xFFFFFFFF)) { timestamp64 += ((uint64_t)1 << 32); } // [microseconds -> ticks, always round the result up to avoid too early // interrupt generation] uint32_t compare_value = (uint32_t)CEIL_DIV((timestamp64) * RTC_INPUT_FREQ, 1000000); core_util_critical_section_enter(); // The COMPARE event occurs when the value in compare register is N and // the counter value changes from N-1 to N. Therefore, the minimal safe // difference between the compare value to be set and the current counter // value is 2 ticks. This guarantees that the compare trigger is properly // setup before the compare condition occurs. uint32_t closest_safe_compare = common_rtc_32bit_ticks_get() + 2; if ((int)(compare_value - closest_safe_compare) <= 0) { compare_value = closest_safe_compare; } nrf_rtc_cc_set(COMMON_RTC_INSTANCE, cc_channel, RTC_WRAP(compare_value)); nrf_rtc_event_enable(COMMON_RTC_INSTANCE, int_mask); core_util_critical_section_exit(); } //------------------------------------------------------------------------------ void us_ticker_init(void) { common_rtc_init(); } uint32_t us_ticker_read() { us_ticker_init(); return (uint32_t)common_rtc_64bit_us_get(); } void us_ticker_set_interrupt(timestamp_t timestamp) { common_rtc_set_interrupt(timestamp, US_TICKER_CC_CHANNEL, US_TICKER_INT_MASK); } void us_ticker_fire_interrupt(void) { uint32_t closest_safe_compare = common_rtc_32bit_ticks_get() + 2; nrf_rtc_cc_set(COMMON_RTC_INSTANCE, US_TICKER_CC_CHANNEL, RTC_WRAP(closest_safe_compare)); nrf_rtc_event_enable(COMMON_RTC_INSTANCE, US_TICKER_INT_MASK); } void us_ticker_disable_interrupt(void) { nrf_rtc_event_disable(COMMON_RTC_INSTANCE, US_TICKER_INT_MASK); } void us_ticker_clear_interrupt(void) { nrf_rtc_event_clear(COMMON_RTC_INSTANCE, US_TICKER_EVENT); } // Since there is no SysTick on NRF51, the RTC1 channel 1 is used as an // alternative source of RTOS ticks. #if defined(TARGET_MCU_NRF51822) #include "mbed_toolchain.h" #define MAX_RTC_COUNTER_VAL ((1uL << RTC_COUNTER_BITS) - 1) #ifndef RTC1_CONFIG_FREQUENCY #define RTC1_CONFIG_FREQUENCY 32678 // [Hz] #endif void COMMON_RTC_IRQ_HANDLER(void) { if(!nrf_rtc_event_pending(COMMON_RTC_INSTANCE, OS_TICK_EVENT)) { common_rtc_irq_handler(); } } IRQn_Type mbed_get_m0_tick_irqn() { return SWI3_IRQn; } #endif // defined(TARGET_MCU_NRF51822)