test
Fork of mbed-dev by
targets/TARGET_STM/pwmout_api.c
- Committer:
- <>
- Date:
- 2017-03-14
- Revision:
- 160:d5399cc887bb
File content as of revision 160:d5399cc887bb:
/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2015, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #include "pwmout_api.h" #if DEVICE_PWMOUT #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" #include "PeripheralPins.h" #include "pwmout_device.h" static TIM_HandleTypeDef TimHandle; void pwmout_init(pwmout_t* obj, PinName pin) { // Get the peripheral name from the pin and assign it to the object obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM); MBED_ASSERT(obj->pwm != (PWMName)NC); // Get the functions (timer channel, (non)inverted) from the pin and assign it to the object uint32_t function = pinmap_function(pin, PinMap_PWM); MBED_ASSERT(function != (uint32_t)NC); obj->channel = STM_PIN_CHANNEL(function); obj->inverted = STM_PIN_INVERTED(function); // Enable TIM clock #if defined(TIM1_BASE) if (obj->pwm == PWM_1){ __HAL_RCC_TIM1_CLK_ENABLE(); } #endif #if defined(TIM2_BASE) if (obj->pwm == PWM_2) { __HAL_RCC_TIM2_CLK_ENABLE(); } #endif #if defined(TIM3_BASE) if (obj->pwm == PWM_3) { __HAL_RCC_TIM3_CLK_ENABLE(); } #endif #if defined(TIM4_BASE) if (obj->pwm == PWM_4) { __HAL_RCC_TIM4_CLK_ENABLE(); } #endif #if defined(TIM5_BASE) if (obj->pwm == PWM_5) { __HAL_RCC_TIM5_CLK_ENABLE(); } #endif #if defined(TIM8_BASE) if (obj->pwm == PWM_8) { __HAL_RCC_TIM8_CLK_ENABLE(); } #endif #if defined(TIM9_BASE) if (obj->pwm == PWM_9) { __HAL_RCC_TIM9_CLK_ENABLE(); } #endif #if defined(TIM10_BASE) if (obj->pwm == PWM_10) { __HAL_RCC_TIM10_CLK_ENABLE(); } #endif #if defined(TIM11_BASE) if (obj->pwm == PWM_11) { __HAL_RCC_TIM11_CLK_ENABLE(); } #endif #if defined(TIM12_BASE) if (obj->pwm == PWM_12) { __HAL_RCC_TIM12_CLK_ENABLE(); } #endif #if defined(TIM13_BASE) if (obj->pwm == PWM_13) { __HAL_RCC_TIM13_CLK_ENABLE(); } #endif #if defined(TIM14_BASE) if (obj->pwm == PWM_14) { __HAL_RCC_TIM14_CLK_ENABLE(); } #endif #if defined(TIM15_BASE) if (obj->pwm == PWM_15) { __HAL_RCC_TIM15_CLK_ENABLE(); } #endif #if defined(TIM16_BASE) if (obj->pwm == PWM_16) { __HAL_RCC_TIM16_CLK_ENABLE(); } #endif #if defined(TIM17_BASE) if (obj->pwm == PWM_17) { __HAL_RCC_TIM17_CLK_ENABLE(); } #endif #if defined(TIM18_BASE) if (obj->pwm == PWM_18) { __HAL_RCC_TIM18_CLK_ENABLE(); } #endif #if defined(TIM19_BASE) if (obj->pwm == PWM_19) { __HAL_RCC_TIM19_CLK_ENABLE(); } #endif #if defined(TIM20_BASE) if (obj->pwm == PWM_20) { __HAL_RCC_TIM20_CLK_ENABLE(); } #endif #if defined(TIM21_BASE) if (obj->pwm == PWM_21) { __HAL_RCC_TIM21_CLK_ENABLE(); } #endif #if defined(TIM22_BASE) if (obj->pwm == PWM_22) { __HAL_RCC_TIM22_CLK_ENABLE(); } #endif // Configure GPIO pinmap_pinout(pin, PinMap_PWM); obj->pin = pin; obj->period = 0; obj->pulse = 0; obj->prescaler = 1; pwmout_period_us(obj, 20000); // 20 ms per default } void pwmout_free(pwmout_t* obj) { // Configure GPIO pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); } void pwmout_write(pwmout_t* obj, float value) { TIM_OC_InitTypeDef sConfig; int channel = 0; TimHandle.Instance = (TIM_TypeDef *)(obj->pwm); if (value < (float)0.0) { value = 0.0; } else if (value > (float)1.0) { value = 1.0; } obj->pulse = (uint32_t)((float)obj->period * value); // Configure channels sConfig.OCMode = TIM_OCMODE_PWM1; sConfig.Pulse = obj->pulse / obj->prescaler; sConfig.OCPolarity = TIM_OCPOLARITY_HIGH; sConfig.OCFastMode = TIM_OCFAST_DISABLE; #if defined(TIM_OCIDLESTATE_RESET) sConfig.OCIdleState = TIM_OCIDLESTATE_RESET; #endif #if defined(TIM_OCNIDLESTATE_RESET) sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET; #endif switch (obj->channel) { case 1: channel = TIM_CHANNEL_1; break; case 2: channel = TIM_CHANNEL_2; break; case 3: channel = TIM_CHANNEL_3; break; case 4: channel = TIM_CHANNEL_4; break; default: return; } if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, channel) != HAL_OK) { error("Cannot initialize PWM\n"); } #if !defined(PWMOUT_INVERTED_NOT_SUPPORTED) if (obj->inverted) { HAL_TIMEx_PWMN_Start(&TimHandle, channel); } else #endif { HAL_TIM_PWM_Start(&TimHandle, channel); } } float pwmout_read(pwmout_t* obj) { float value = 0; if (obj->period > 0) { value = (float)(obj->pulse) / (float)(obj->period); } return ((value > (float)1.0) ? (float)(1.0) : (value)); } void pwmout_period(pwmout_t* obj, float seconds) { pwmout_period_us(obj, seconds * 1000000.0f); } void pwmout_period_ms(pwmout_t* obj, int ms) { pwmout_period_us(obj, ms * 1000); } void pwmout_period_us(pwmout_t* obj, int us) { TimHandle.Instance = (TIM_TypeDef *)(obj->pwm); RCC_ClkInitTypeDef RCC_ClkInitStruct; uint32_t PclkFreq = 0; uint32_t APBxCLKDivider = RCC_HCLK_DIV1; float dc = pwmout_read(obj); uint8_t i = 0; __HAL_TIM_DISABLE(&TimHandle); // Get clock configuration // Note: PclkFreq contains here the Latency (not used after) HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq); /* Parse the pwm / apb mapping table to find the right entry */ while(pwm_apb_map_table[i].pwm != obj->pwm) { i++; } if(pwm_apb_map_table[i].pwm == 0) error("Unknown PWM instance"); if(pwm_apb_map_table[i].pwmoutApb == PWMOUT_ON_APB1) { PclkFreq = HAL_RCC_GetPCLK1Freq(); APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider; } else { #if !defined(PWMOUT_APB2_NOT_SUPPORTED) PclkFreq = HAL_RCC_GetPCLK2Freq(); APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider; #endif } /* By default use, 1us as SW pre-scaler */ obj->prescaler = 1; // TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx if (APBxCLKDivider == RCC_HCLK_DIV1) { TimHandle.Init.Prescaler = (((PclkFreq) / 1000000)) - 1; // 1 us tick } else { TimHandle.Init.Prescaler = (((PclkFreq * 2) / 1000000)) - 1; // 1 us tick } TimHandle.Init.Period = (us - 1); /* In case period or pre-scalers are out of range, loop-in to get valid values */ while ((TimHandle.Init.Period > 0xFFFF) || (TimHandle.Init.Prescaler > 0xFFFF)) { obj->prescaler = obj->prescaler * 2; if (APBxCLKDivider == RCC_HCLK_DIV1) { TimHandle.Init.Prescaler = (((PclkFreq) / 1000000) * obj->prescaler) - 1; } else { TimHandle.Init.Prescaler = (((PclkFreq * 2) / 1000000) * obj->prescaler) - 1; } TimHandle.Init.Period = (us - 1) / obj->prescaler; /* Period decreases and prescaler increases over loops, so check for * possible out of range cases */ if ((TimHandle.Init.Period < 0xFFFF) && (TimHandle.Init.Prescaler > 0xFFFF)) { error("Cannot initialize PWM\n"); break; } } TimHandle.Init.ClockDivision = 0; TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) { error("Cannot initialize PWM\n"); } // Save for future use obj->period = us; // Set duty cycle again pwmout_write(obj, dc); __HAL_TIM_ENABLE(&TimHandle); } void pwmout_pulsewidth(pwmout_t* obj, float seconds) { pwmout_pulsewidth_us(obj, seconds * 1000000.0f); } void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) { pwmout_pulsewidth_us(obj, ms * 1000); } void pwmout_pulsewidth_us(pwmout_t* obj, int us) { float value = (float)us / (float)obj->period; pwmout_write(obj, value); } #endif