test
Fork of mbed-dev by
targets/TARGET_Maxim/TARGET_MAX32630/serial_api.c
- Committer:
- Kojto
- Date:
- 2017-08-03
- Revision:
- 171:19eb464bc2be
- Parent:
- 166:e614a9f1c9e2
File content as of revision 171:19eb464bc2be:
/******************************************************************************* * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. ******************************************************************************* */ #include <string.h> #include "mbed_assert.h" #include "cmsis.h" #include "serial_api.h" #include "gpio_api.h" #include "uart.h" #include "uart_regs.h" #include "ioman_regs.h" #include "PeripheralPins.h" #define DEFAULT_BAUD 9600 #define UART_ERRORS (MXC_F_UART_INTFL_RX_FRAMING_ERR | \ MXC_F_UART_INTFL_RX_PARITY_ERR | \ MXC_F_UART_INTFL_RX_FIFO_OVERFLOW) // Variables for managing the stdio UART int stdio_uart_inited = 0; serial_t stdio_uart = {0}; // Variables for interrupt driven static uart_irq_handler irq_handler; static serial_t *objs[MXC_CFG_UART_INSTANCES]; static void usurp_pin(PinName, int); //****************************************************************************** void serial_init(serial_t *obj, PinName tx, PinName rx) { // Determine which uart is associated with each pin UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx); // Make sure that both pins are pointing to the same uart MBED_ASSERT(uart != (UARTName)NC); // Set the obj pointer to the proper uart obj->uart = (mxc_uart_regs_t*)uart; // Set the uart index obj->index = MXC_UART_GET_IDX(obj->uart); obj->fifo = (mxc_uart_fifo_regs_t*)MXC_UART_GET_BASE_FIFO(obj->index); // Record the pins requested obj->tx = tx; obj->rx = rx; // Merge pin function requests for use with CMSIS init func ioman_req_t io_req = {0}; pin_function_t *pin_func = NULL; if (tx != NC) { pin_func = (pin_function_t *)pinmap_find_function(tx, PinMap_UART_TX); io_req.value = pin_func->req_val; } if (rx != NC) { pin_func = (pin_function_t *)pinmap_find_function(rx, PinMap_UART_RX); io_req.value |= pin_func->req_val; } // Using req and ack pointers of last pin function lookup obj->sys_cfg.io_cfg.req_reg = pin_func->reg_req; obj->sys_cfg.io_cfg.ack_reg = pin_func->reg_ack; obj->sys_cfg.io_cfg.req_val = io_req; obj->sys_cfg.clk_scale = CLKMAN_SCALE_DIV_8; // Configure the UART with default parameters obj->cfg.extra_stop = 0; obj->cfg.cts = 0; obj->cfg.rts = 0; obj->cfg.baud = DEFAULT_BAUD; obj->cfg.size = UART_DATA_SIZE_8_BITS; obj->cfg.parity = UART_PARITY_DISABLE; // Manage stdio UART if (uart == STDIO_UART) { stdio_uart_inited = 1; stdio_uart = *obj; } int retval = UART_Init(obj->uart, &obj->cfg, &obj->sys_cfg); MBED_ASSERT(retval == E_NO_ERROR); } //****************************************************************************** void serial_baud(serial_t *obj, int baudrate) { obj->cfg.baud = baudrate; int retval = UART_Init(obj->uart, &obj->cfg, &obj->sys_cfg); MBED_ASSERT(retval == E_NO_ERROR); } //****************************************************************************** void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { switch (data_bits) { case 5: obj->cfg.size = UART_DATA_SIZE_5_BITS; break; case 6: obj->cfg.size = UART_DATA_SIZE_6_BITS; break; case 7: obj->cfg.size = UART_DATA_SIZE_7_BITS; break; case 8: obj->cfg.size = UART_DATA_SIZE_8_BITS; break; default: MBED_ASSERT(0); break; } switch (parity) { case ParityNone: obj->cfg.parity = UART_PARITY_DISABLE; break; case ParityOdd : obj->cfg.parity = UART_PARITY_ODD; break; case ParityEven: obj->cfg.parity = UART_PARITY_EVEN; break; case ParityForced1: case ParityForced0: default: MBED_ASSERT(0); break; } switch (stop_bits) { case 1: obj->cfg.extra_stop = 0; break; case 2: obj->cfg.extra_stop = 1; break; default: MBED_ASSERT(0); break; } int retval = UART_Init(obj->uart, &obj->cfg, NULL); MBED_ASSERT(retval == E_NO_ERROR); } //****************************************************************************** void uart_handler(serial_t *obj) { // clear interrupts volatile uint32_t flags = obj->uart->intfl; obj->uart->intfl = flags; if (obj && obj->id) { irq_handler(obj->id, RxIrq); } } void uart0_handler(void) { uart_handler(objs[0]); } void uart1_handler(void) { uart_handler(objs[1]); } void uart2_handler(void) { uart_handler(objs[2]); } void uart3_handler(void) { uart_handler(objs[3]); } //****************************************************************************** void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; obj->id = id; } //****************************************************************************** void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { MBED_ASSERT(obj->index < MXC_CFG_UART_INSTANCES); objs[obj->index] = obj; switch (obj->index) { case 0: NVIC_SetVector(UART0_IRQn, (uint32_t)uart0_handler); NVIC_EnableIRQ(UART0_IRQn); break; case 1: NVIC_SetVector(UART1_IRQn, (uint32_t)uart1_handler); NVIC_EnableIRQ(UART1_IRQn); break; case 2: NVIC_SetVector(UART2_IRQn, (uint32_t)uart2_handler); NVIC_EnableIRQ(UART2_IRQn); break; case 3: NVIC_SetVector(UART3_IRQn, (uint32_t)uart3_handler); NVIC_EnableIRQ(UART3_IRQn); break; default: MBED_ASSERT(0); } if (irq == RxIrq) { // Enable RX FIFO Threshold Interrupt if (enable) { // Clear pending interrupts obj->uart->intfl = obj->uart->intfl; obj->uart->inten |= (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS); } else { // Clear pending interrupts obj->uart->intfl = obj->uart->intfl; obj->uart->inten &= ~(MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS); } } else if (irq == TxIrq) { // Set TX Almost Empty level to interrupt when empty MXC_SET_FIELD(&obj->uart->tx_fifo_ctrl, MXC_F_UART_RX_FIFO_CTRL_FIFO_AF_LVL, (MXC_UART_FIFO_DEPTH - 1) << MXC_F_UART_TX_FIFO_CTRL_FIFO_AE_LVL_POS); // Enable TX Almost Empty Interrupt if (enable) { // Clear pending interrupts obj->uart->intfl = obj->uart->intfl; obj->uart->inten |= MXC_F_UART_INTFL_TX_FIFO_AE; } else { // Clear pending interrupts obj->uart->intfl = obj->uart->intfl; obj->uart->inten &= ~MXC_F_UART_INTFL_TX_FIFO_AE; } } else { MBED_ASSERT(0); } } //****************************************************************************** int serial_getc(serial_t *obj) { int c = -1; if (obj->rx != NC) { // Wait for data to be available while ((obj->uart->rx_fifo_ctrl & MXC_F_UART_RX_FIFO_CTRL_FIFO_ENTRY) == 0); c = obj->fifo->rx; } return c; } //****************************************************************************** void serial_putc(serial_t *obj, int c) { if (obj->tx != NC) { // Wait for room in the FIFO without blocking interrupts. while (UART_NumWriteAvail(obj->uart) == 0); // Must clear before every write to the buffer to know that the FIFO // is empty when the TX DONE bit is set obj->uart->intfl = MXC_F_UART_INTFL_TX_DONE; obj->fifo->tx = (uint8_t)c; } } //****************************************************************************** int serial_readable(serial_t *obj) { return UART_NumReadAvail(obj->uart); } //****************************************************************************** int serial_writable(serial_t *obj) { return UART_NumWriteAvail(obj->uart); } //****************************************************************************** void serial_clear(serial_t *obj) { // Clear the RX and TX FIFOs UART_DrainRX(obj->uart); UART_DrainTX(obj->uart); } //****************************************************************************** void serial_break_set(serial_t *obj) { // Make sure that nothing is being sent while (((obj->uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY) >> MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY_POS) > 0); while (!(obj->uart->intfl & MXC_F_UART_INTFL_TX_DONE)); // Configure TX to output 0 usurp_pin(obj->tx, 0); // GPIO is setup now, but we need to unmap UART from the pin pin_function_t *pin_func = (pin_function_t *)pinmap_find_function(obj->tx, PinMap_UART_TX); *pin_func->reg_req &= ~MXC_F_IOMAN_UART_REQ_IO_REQ; MBED_ASSERT((*pin_func->reg_ack & MXC_F_IOMAN_UART_ACK_IO_ACK) == 0); } //****************************************************************************** void serial_break_clear(serial_t *obj) { // Configure TX to output 1 usurp_pin(obj->tx, 1); // Return TX to UART control serial_pinout_tx(obj->tx); } //****************************************************************************** void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } //****************************************************************************** void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { pin_function_t rtscts_pin_func = {0}; obj->cfg.cts = 0; obj->cfg.rts = 0; if ((FlowControlCTS == type) || (FlowControlRTSCTS == type)) { UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS); UARTName uart = (UARTName)pinmap_merge(uart_cts, (UARTName)obj->uart); // Assert pin is usable with existing uart MBED_ASSERT(uart != (UARTName)NC); pin_function_t *pin_func; pin_func = (pin_function_t *)pinmap_find_function(txflow, PinMap_UART_CTS); rtscts_pin_func.req_val |= pin_func->req_val; obj->cfg.cts = 1; } if ((FlowControlRTS == type) || (FlowControlRTSCTS == type)) { UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS); UARTName uart = (UARTName)pinmap_merge(uart_rts, (UARTName)obj->uart); MBED_ASSERT(uart != (UARTName)NC); pin_function_t *pin_func; pin_func = (pin_function_t *)pinmap_find_function(rxflow, PinMap_UART_RTS); rtscts_pin_func.req_val |= pin_func->req_val; obj->cfg.rts = 1; } obj->sys_cfg.io_cfg.req_val.value |= rtscts_pin_func.req_val; int retval = UART_Init(obj->uart, &obj->cfg, &obj->sys_cfg); MBED_ASSERT(retval == E_NO_ERROR); } //****************************************************************************** static void usurp_pin(PinName pin, int state) { gpio_t gpio; gpio_init_out(&gpio, pin); gpio_write(&gpio, state); }