test
Fork of mbed-dev by
targets/TARGET_Maxim/TARGET_MAX32600/serial_api.c
- Committer:
- <>
- Date:
- 2016-10-28
- Revision:
- 149:156823d33999
- Parent:
- targets/hal/TARGET_Maxim/TARGET_MAX32610/serial_api.c@ 147:30b64687e01f
File content as of revision 149:156823d33999:
/******************************************************************************* * Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. ******************************************************************************* */ #include <string.h> #include "mbed_assert.h" #include "cmsis.h" #include "serial_api.h" #include "gpio_api.h" #include "uart_regs.h" #include "ioman_regs.h" #include "PeripheralPins.h" #define UART_NUM 2 #define DEFAULT_BAUD 9600 #define DEFAULT_STOP 1 #define DEFAULT_PARITY ParityNone #define UART_ERRORS (MXC_F_UART_INTFL_RX_FRAME_ERROR | \ MXC_F_UART_INTFL_RX_PARITY_ERROR | \ MXC_F_UART_INTFL_RX_OVERRUN) // Variables for managing the stdio UART int stdio_uart_inited; serial_t stdio_uart; // Variables for interrupt driven static uart_irq_handler irq_handler; static uint32_t serial_irq_ids[UART_NUM]; //****************************************************************************** void serial_init(serial_t *obj, PinName tx, PinName rx) { // Determine which uart is associated with each pin UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx); // Make sure that both pins are pointing to the same uart MBED_ASSERT(uart != (UARTName)NC); // Set the obj pointer to the proper uart obj->uart = (mxc_uart_regs_t*)uart; // Set the uart index obj->index = MXC_UART_BASE_TO_INSTANCE(obj->uart); // Configure the pins pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); // Flush the RX and TX FIFOs, clear the settings obj->uart->ctrl = ( MXC_F_UART_CTRL_TX_FIFO_FLUSH | MXC_F_UART_CTRL_RX_FIFO_FLUSH); // Disable interrupts obj->uart->inten = 0; obj->uart->intfl = 0; // Configure to default settings serial_baud(obj, DEFAULT_BAUD); serial_format(obj, 8, ParityNone, 1); // Manage stdio UART if(uart == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } } //****************************************************************************** void serial_baud(serial_t *obj, int baudrate) { uint32_t idiv = 0, ddiv = 0, div = 0; // Calculate the integer and decimal portions div = SystemCoreClock / ((baudrate / 100) * 128); idiv = (div / 100); ddiv = (div - idiv * 100) * 128 / 100; obj->uart->baud_int = idiv; obj->uart->baud_div_128 = ddiv; // Enable the baud clock obj->uart->ctrl |= MXC_F_UART_CTRL_BAUD_CLK_EN; } //****************************************************************************** void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { // Check the validity of the inputs MBED_ASSERT((data_bits > 4) && (data_bits < 9)); MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) || (parity == ParityForced1) || (parity == ParityForced0)); MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); // Adjust the stop and data bits stop_bits -= 1; data_bits -= 5; // Adjust the parity setting int paren = 0, mode = 0; switch (parity) { case ParityNone: paren = 0; mode = 0; break; case ParityOdd : paren = 1; mode = 0; break; case ParityEven: paren = 1; mode = 1; break; case ParityForced1: // Hardware does not support forced parity MBED_ASSERT(0); break; case ParityForced0: // Hardware does not support forced parity MBED_ASSERT(0); break; default: paren = 1; mode = 0; break; } obj->uart->ctrl |= ((data_bits << MXC_F_UART_CTRL_CHAR_LENGTH_POS) | (stop_bits << MXC_F_UART_CTRL_STOP_BIT_MODE_POS) | (paren << MXC_F_UART_CTRL_PARITY_ENABLE_POS) | (mode << MXC_F_UART_CTRL_PARITY_MODE_POS)); } //****************************************************************************** void uart_handler(mxc_uart_regs_t* uart, int id) { // Check for errors or RX Threshold if(uart->intfl & (MXC_F_UART_INTFL_RX_OVER_THRESHOLD | UART_ERRORS)) { irq_handler(serial_irq_ids[id], RxIrq); uart->intfl &= ~(MXC_F_UART_INTFL_RX_OVER_THRESHOLD | UART_ERRORS); } // Check for TX Threshold if(uart->intfl & MXC_F_UART_INTFL_TX_ALMOST_EMPTY) { irq_handler(serial_irq_ids[id], TxIrq); uart->intfl &= ~(MXC_F_UART_INTFL_TX_ALMOST_EMPTY); } } void uart0_handler(void) { uart_handler(MXC_UART0, 0); } void uart1_handler(void) { uart_handler(MXC_UART1, 1); } //****************************************************************************** void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; serial_irq_ids[obj->index] = id; } //****************************************************************************** void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { if(obj->index == 0) { NVIC_SetVector(UART0_IRQn, (uint32_t)uart0_handler); NVIC_EnableIRQ(UART0_IRQn); } else { NVIC_SetVector(UART1_IRQn, (uint32_t)uart1_handler); NVIC_EnableIRQ(UART1_IRQn); } if(irq == RxIrq) { // Set the RX FIFO Threshold to 1 obj->uart->ctrl &= ~MXC_F_UART_CTRL_RX_THRESHOLD; obj->uart->ctrl |= 0x1; // Enable RX FIFO Threshold Interrupt if(enable) { // Clear pending interrupts obj->uart->intfl = 0; obj->uart->inten |= (MXC_F_UART_INTFL_RX_OVER_THRESHOLD | UART_ERRORS); } else { // Clear pending interrupts obj->uart->intfl = 0; obj->uart->inten &= ~(MXC_F_UART_INTFL_RX_OVER_THRESHOLD | UART_ERRORS); } } else if (irq == TxIrq) { // Enable TX Almost empty Interrupt if(enable) { // Clear pending interrupts obj->uart->intfl = 0; obj->uart->inten |= MXC_F_UART_INTFL_TX_ALMOST_EMPTY; } else { // Clear pending interrupts obj->uart->intfl = 0; obj->uart->inten &= ~MXC_F_UART_INTFL_TX_ALMOST_EMPTY; } } else { MBED_ASSERT(0); } } //****************************************************************************** int serial_getc(serial_t *obj) { int c; // Wait for data to be available while(obj->uart->status & MXC_F_UART_STATUS_RX_FIFO_EMPTY) {} c = obj->uart->tx_rx_fifo & 0xFF; return c; } //****************************************************************************** void serial_putc(serial_t *obj, int c) { // Wait for TXFIFO to not be full while(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_FULL) {} obj->uart->tx_rx_fifo = c; } //****************************************************************************** int serial_readable(serial_t *obj) { return (!(obj->uart->status & MXC_F_UART_STATUS_RX_FIFO_EMPTY)); } //****************************************************************************** int serial_writable(serial_t *obj) { return (!(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_FULL)); } //****************************************************************************** void serial_clear(serial_t *obj) { // Clear the rx and tx fifos obj->uart->ctrl |= (MXC_F_UART_CTRL_TX_FIFO_FLUSH | MXC_F_UART_CTRL_RX_FIFO_FLUSH ); } //****************************************************************************** void serial_break_set(serial_t *obj) { // Make sure that nothing is being sent while (!(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_EMPTY)); while (obj->uart->status & MXC_F_UART_STATUS_TX_BUSY); // Configure the GPIO to outpu 0 gpio_t tx_gpio; switch (((UARTName)(obj->uart))) { case UART_0: gpio_init_out(&tx_gpio, UART0_TX); break; case UART_1: gpio_init_out(&tx_gpio, UART1_TX); break; default: gpio_init_out(&tx_gpio, (PinName)NC); break; } gpio_write(&tx_gpio, 0); // GPIO is setup now, but we need to maps gpio to the pin switch (((UARTName)(obj->uart))) { case UART_0: MXC_IOMAN->uart0_req &= ~MXC_F_IOMAN_UART_CORE_IO; MBED_ASSERT((MXC_IOMAN->uart0_ack & (MXC_F_IOMAN_UART_CORE_IO | MXC_F_IOMAN_UART_CORE_IO)) == 0); break; case UART_1: MXC_IOMAN->uart1_req &= ~MXC_F_IOMAN_UART_CORE_IO; MBED_ASSERT((MXC_IOMAN->uart1_ack & (MXC_F_IOMAN_UART_CORE_IO | MXC_F_IOMAN_UART_CORE_IO)) == 0); break; default: break; } } //****************************************************************************** void serial_break_clear(serial_t *obj) { // Configure the GPIO to output 1 gpio_t tx_gpio; switch (((UARTName)(obj->uart))) { case UART_0: gpio_init_out(&tx_gpio, UART0_TX); break; case UART_1: gpio_init_out(&tx_gpio, UART1_TX); break; default: gpio_init_out(&tx_gpio, (PinName)NC); break; } gpio_write(&tx_gpio, 1); // Renable UART switch (((UARTName)(obj->uart))) { case UART_0: serial_pinout_tx(UART0_TX); break; case UART_1: serial_pinout_tx(UART1_TX); break; default: serial_pinout_tx((PinName)NC); break; } } //****************************************************************************** void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } //****************************************************************************** void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { if(FlowControlNone == type) { // Disable hardware flow control obj->uart->ctrl &= ~(MXC_F_UART_CTRL_HW_FLOW_CTRL_EN); return; } // Check to see if we can use HW flow control UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS); UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS); UARTName uart = (UARTName)pinmap_merge(uart_cts, uart_rts); if((FlowControlCTS == type) || (FlowControlRTSCTS== type)) { // Make sure pin is in the PinMap MBED_ASSERT(uart_cts != (UARTName)NC); // Enable the pin for CTS function pinmap_pinout(txflow, PinMap_UART_CTS); } if((FlowControlRTS == type) || (FlowControlRTSCTS== type)) { // Make sure pin is in the PinMap MBED_ASSERT(uart_rts != (UARTName)NC); // Enable the pin for RTS function pinmap_pinout(rxflow, PinMap_UART_RTS); } if(FlowControlRTSCTS == type){ // Make sure that the pins are pointing to the same UART MBED_ASSERT(uart != (UARTName)NC); } // Enable hardware flow control obj->uart->ctrl |= MXC_F_UART_CTRL_HW_FLOW_CTRL_EN; }