
Sword fighting robots WIP
ik.cpp
- Committer:
- amitchell41
- Date:
- 2018-12-06
- Revision:
- 0:e8eecd4b9a3d
File content as of revision 0:e8eecd4b9a3d:
/* Inverse kinetics, Nick Moriarty May 2014 This code is provided under the terms of the MIT license. The MIT License (MIT) Copyright (c) 2014 Nick Moriarty Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "math.h" #include "ik.h" #include "config.h" const float PI=3.14159265359; // Get polar coords from cartesian ones void cart2polar(float a, float b, float& r, float& theta) { // Determine magnitude of cartesian coords r = sqrt(a*a + b*b); // Don't try to calculate zero-magnitude vectors' angles if(r == 0) return; float c = a / r; float s = b / r; // Safety! if(s > 1) s = 1; if(c > 1) c = 1; if(s < -1) s = -1; if(c < -1) c = -1; // Calculate angle in 0..PI theta = acos(c); // Convert to full range if(s < 0) theta *= -1; } // Get angle from a triangle using cosine rule bool cosangle(float opp, float adj1, float adj2, float& theta) { // Cosine rule: // C^2 = A^2 + B^2 - 2*A*B*cos(angle_AB) // cos(angle_AB) = (A^2 + B^2 - C^2)/(2*A*B) // C is opposite // A, B are adjacent float den = 2*adj1*adj2; if(den==0) return false; float c = (adj1*adj1 + adj2*adj2 - opp*opp)/den; if(c>1 || c<-1) return false; theta = acos(c); return true; } // Solve angles! bool solve(float x, float y, float z, float& a0, float& a1, float& a2) { // Solve top-down view float r, th0; cart2polar(y, x, r, th0); // Account for the wrist length! r -= L3; // In arm plane, convert to polar float ang_P, R; cart2polar(r, z, R, ang_P); // Solve arm inner angles as required float B, C; if(!cosangle(L2, L1, R, B)) return false; if(!cosangle(R, L1, L2, C)) return false; // Solve for servo angles from horizontal a0 = th0; a1 = ang_P + B; a2 = C + a1 - PI; return true; }