Hexmodal SX1276lib
Dependents: LoRaWAN-hello-world_Class_C_Anish
sx1276/sx1276.cpp
- Committer:
- mluis
- Date:
- 2015-01-22
- Revision:
- 15:04374b1c33fa
- Parent:
- 14:8552d0b840be
- Child:
- 16:d447f8d2d2d6
File content as of revision 15:04374b1c33fa:
/* / _____) _ | | ( (____ _____ ____ _| |_ _____ ____| |__ \____ \| ___ | (_ _) ___ |/ ___) _ \ _____) ) ____| | | || |_| ____( (___| | | | (______/|_____)_|_|_| \__)_____)\____)_| |_| ( C )2014 Semtech Description: Actual implementation of a SX1276 radio, inherits Radio License: Revised BSD License, see LICENSE.TXT file include in the project Maintainers: Miguel Luis, Gregory Cristian and Nicolas Huguenin */ #include "sx1276.h" const FskBandwidth_t SX1276::FskBandwidths[] = { { 2600 , 0x17 }, { 3100 , 0x0F }, { 3900 , 0x07 }, { 5200 , 0x16 }, { 6300 , 0x0E }, { 7800 , 0x06 }, { 10400 , 0x15 }, { 12500 , 0x0D }, { 15600 , 0x05 }, { 20800 , 0x14 }, { 25000 , 0x0C }, { 31300 , 0x04 }, { 41700 , 0x13 }, { 50000 , 0x0B }, { 62500 , 0x03 }, { 83333 , 0x12 }, { 100000, 0x0A }, { 125000, 0x02 }, { 166700, 0x11 }, { 200000, 0x09 }, { 250000, 0x01 }, { 0, 0x00 }, // Invalid Badwidth }; SX1276::SX1276( void ( *txDone )( ), void ( *txTimeout ) ( ), void ( *rxDone ) ( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr ), void ( *rxTimeout ) ( ), void ( *rxError ) ( ), void ( *fhssChangeChannel ) ( uint8_t channelIndex ), void ( *cadDone ) ( bool channelActivityDetected ), PinName mosi, PinName miso, PinName sclk, PinName nss, PinName reset, PinName dio0, PinName dio1, PinName dio2, PinName dio3, PinName dio4, PinName dio5 ) : Radio( txDone, txTimeout, rxDone, rxTimeout, rxError, fhssChangeChannel, cadDone ), spi( mosi, miso, sclk ), nss( nss ), reset( reset ), dio0( dio0 ), dio1( dio1 ), dio2( dio2 ), dio3( dio3 ), dio4( dio4 ), dio5( dio5 ), isRadioActive( false ) { wait_ms( 10 ); this->rxTx = 0; this->rxBuffer = new uint8_t[RX_BUFFER_SIZE]; previousOpMode = RF_OPMODE_STANDBY; this->dioIrq = new DioIrqHandler[6]; this->dioIrq[0] = &SX1276::OnDio0Irq; this->dioIrq[1] = &SX1276::OnDio1Irq; this->dioIrq[2] = &SX1276::OnDio2Irq; this->dioIrq[3] = &SX1276::OnDio3Irq; this->dioIrq[4] = &SX1276::OnDio4Irq; this->dioIrq[5] = NULL; this->settings.State = IDLE; } SX1276::~SX1276( ) { delete this->rxBuffer; delete this->dioIrq; } void SX1276::RxChainCalibration( void ) { uint8_t regPaConfigInitVal; uint32_t initialFreq; // Save context regPaConfigInitVal = this->Read( REG_PACONFIG ); initialFreq = ( double )( ( ( uint32_t )this->Read( REG_FRFMSB ) << 16 ) | ( ( uint32_t )this->Read( REG_FRFMID ) << 8 ) | ( ( uint32_t )this->Read( REG_FRFLSB ) ) ) * ( double )FREQ_STEP; // Cut the PA just in case, RFO output, power = -1 dBm this->Write( REG_PACONFIG, 0x00 ); // Launch Rx chain calibration for LF band Write ( REG_IMAGECAL, ( Read( REG_IMAGECAL ) & RF_IMAGECAL_IMAGECAL_MASK ) | RF_IMAGECAL_IMAGECAL_START ); while( ( Read( REG_IMAGECAL ) & RF_IMAGECAL_IMAGECAL_RUNNING ) == RF_IMAGECAL_IMAGECAL_RUNNING ) { } // Sets a Frequency in HF band settings.Channel= 868000000 ; // Launch Rx chain calibration for HF band Write ( REG_IMAGECAL, ( Read( REG_IMAGECAL ) & RF_IMAGECAL_IMAGECAL_MASK ) | RF_IMAGECAL_IMAGECAL_START ); while( ( Read( REG_IMAGECAL ) & RF_IMAGECAL_IMAGECAL_RUNNING ) == RF_IMAGECAL_IMAGECAL_RUNNING ) { } // Restore context this->Write( REG_PACONFIG, regPaConfigInitVal ); SetChannel( initialFreq ); } RadioState SX1276::GetState( void ) { return this->settings.State; } void SX1276::SetChannel( uint32_t freq ) { this->settings.Channel = freq; freq = ( uint32_t )( ( double )freq / ( double )FREQ_STEP ); Write( REG_FRFMSB, ( uint8_t )( ( freq >> 16 ) & 0xFF ) ); Write( REG_FRFMID, ( uint8_t )( ( freq >> 8 ) & 0xFF ) ); Write( REG_FRFLSB, ( uint8_t )( freq & 0xFF ) ); } bool SX1276::IsChannelFree( ModemType modem, uint32_t freq, int8_t rssiThresh ) { int16_t rssi = 0; SetModem( modem ); SetChannel( freq ); SetOpMode( RF_OPMODE_RECEIVER ); wait_ms( 1 ); rssi = GetRssi( modem ); Sleep( ); if( rssi > ( int16_t )rssiThresh ) { return false; } return true; } uint32_t SX1276::Random( void ) { uint8_t i; uint32_t rnd = 0; /* * Radio setup for random number generation */ // Set LoRa modem ON SetModem( MODEM_LORA ); // Disable LoRa modem interrupts Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT | RFLR_IRQFLAGS_RXDONE | RFLR_IRQFLAGS_PAYLOADCRCERROR | RFLR_IRQFLAGS_VALIDHEADER | RFLR_IRQFLAGS_TXDONE | RFLR_IRQFLAGS_CADDONE | RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL | RFLR_IRQFLAGS_CADDETECTED ); // Set radio in continuous reception SetOpMode( RF_OPMODE_RECEIVER ); for( i = 0; i < 32; i++ ) { wait_ms( 1 ); // Unfiltered RSSI value reading. Only takes the LSB value rnd |= ( ( uint32_t )Read( REG_LR_RSSIWIDEBAND ) & 0x01 ) << i; } Sleep( ); return rnd; } /*! * Returns the known FSK bandwidth registers value * * \param [IN] bandwidth Bandwidth value in Hz * \retval regValue Bandwidth register value. */ uint8_t SX1276::GetFskBandwidthRegValue( uint32_t bandwidth ) { uint8_t i; for( i = 0; i < ( sizeof( FskBandwidths ) / sizeof( FskBandwidth_t ) ) - 1; i++ ) { if( ( bandwidth >= FskBandwidths[i].bandwidth ) && ( bandwidth < FskBandwidths[i + 1].bandwidth ) ) { return FskBandwidths[i].RegValue; } } // ERROR: Value not found while( 1 ); } void SX1276::SetRxConfig( ModemType modem, uint32_t bandwidth, uint32_t datarate, uint8_t coderate, uint32_t bandwidthAfc, uint16_t preambleLen, uint16_t symbTimeout, bool fixLen, uint8_t payloadLen, bool crcOn, bool freqHopOn, uint8_t hopPeriod, bool iqInverted, bool rxContinuous ) { SetModem( modem ); switch( modem ) { case MODEM_FSK: { this->settings.Fsk.Bandwidth = bandwidth; this->settings.Fsk.Datarate = datarate; this->settings.Fsk.BandwidthAfc = bandwidthAfc; this->settings.Fsk.FixLen = fixLen; this->settings.Fsk.PayloadLen = payloadLen; this->settings.Fsk.CrcOn = crcOn; this->settings.Fsk.IqInverted = iqInverted; this->settings.Fsk.RxContinuous = rxContinuous; this->settings.Fsk.PreambleLen = preambleLen; datarate = ( uint16_t )( ( double )XTAL_FREQ / ( double )datarate ); Write( REG_BITRATEMSB, ( uint8_t )( datarate >> 8 ) ); Write( REG_BITRATELSB, ( uint8_t )( datarate & 0xFF ) ); Write( REG_RXBW, GetFskBandwidthRegValue( bandwidth ) ); Write( REG_AFCBW, GetFskBandwidthRegValue( bandwidthAfc ) ); Write( REG_PREAMBLEMSB, ( uint8_t )( ( preambleLen >> 8 ) & 0xFF ) ); Write( REG_PREAMBLELSB, ( uint8_t )( preambleLen & 0xFF ) ); Write( REG_PACKETCONFIG1, ( Read( REG_PACKETCONFIG1 ) & RF_PACKETCONFIG1_CRC_MASK & RF_PACKETCONFIG1_PACKETFORMAT_MASK ) | ( ( fixLen == 1 ) ? RF_PACKETCONFIG1_PACKETFORMAT_FIXED : RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE ) | ( crcOn << 4 ) ); if( fixLen == 1 ) { Write( REG_PAYLOADLENGTH, payloadLen ); } } break; case MODEM_LORA: { if( bandwidth > 2 ) { // Fatal error: When using LoRa modem only bandwidths 125, 250 and 500 kHz are supported while( 1 ); } bandwidth += 7; this->settings.LoRa.Bandwidth = bandwidth; this->settings.LoRa.Datarate = datarate; this->settings.LoRa.Coderate = coderate; this->settings.LoRa.FixLen = fixLen; this->settings.LoRa.PayloadLen = payloadLen; this->settings.LoRa.CrcOn = crcOn; this->settings.LoRa.FreqHopOn = freqHopOn; this->settings.LoRa.HopPeriod = hopPeriod; this->settings.LoRa.IqInverted = iqInverted; this->settings.LoRa.RxContinuous = rxContinuous; if( datarate > 12 ) { datarate = 12; } else if( datarate < 6 ) { datarate = 6; } if( ( ( bandwidth == 7 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) || ( ( bandwidth == 8 ) && ( datarate == 12 ) ) ) { this->settings.LoRa.LowDatarateOptimize = 0x01; } else { this->settings.LoRa.LowDatarateOptimize = 0x00; } Write( REG_LR_MODEMCONFIG1, ( Read( REG_LR_MODEMCONFIG1 ) & RFLR_MODEMCONFIG1_BW_MASK & RFLR_MODEMCONFIG1_CODINGRATE_MASK & RFLR_MODEMCONFIG1_IMPLICITHEADER_MASK ) | ( bandwidth << 4 ) | ( coderate << 1 ) | fixLen ); Write( REG_LR_MODEMCONFIG2, ( Read( REG_LR_MODEMCONFIG2 ) & RFLR_MODEMCONFIG2_SF_MASK & RFLR_MODEMCONFIG2_RXPAYLOADCRC_MASK & RFLR_MODEMCONFIG2_SYMBTIMEOUTMSB_MASK ) | ( datarate << 4 ) | ( crcOn << 2 ) | ( ( symbTimeout >> 8 ) & ~RFLR_MODEMCONFIG2_SYMBTIMEOUTMSB_MASK ) ); Write( REG_LR_MODEMCONFIG3, ( Read( REG_LR_MODEMCONFIG3 ) & RFLR_MODEMCONFIG3_LOWDATARATEOPTIMIZE_MASK ) | ( this->settings.LoRa.LowDatarateOptimize << 3 ) ); Write( REG_LR_SYMBTIMEOUTLSB, ( uint8_t )( symbTimeout & 0xFF ) ); Write( REG_LR_PREAMBLEMSB, ( uint8_t )( ( preambleLen >> 8 ) & 0xFF ) ); Write( REG_LR_PREAMBLELSB, ( uint8_t )( preambleLen & 0xFF ) ); if( fixLen == 1 ) { Write( REG_LR_PAYLOADLENGTH, payloadLen ); } if( this->settings.LoRa.FreqHopOn == true ) { Write( REG_LR_PLLHOP, ( Read( REG_LR_PLLHOP ) & RFLR_PLLHOP_FASTHOP_MASK ) | RFLR_PLLHOP_FASTHOP_ON ); Write( REG_LR_HOPPERIOD, this->settings.LoRa.HopPeriod ); } if( datarate == 6 ) { Write( REG_LR_DETECTOPTIMIZE, ( Read( REG_LR_DETECTOPTIMIZE ) & RFLR_DETECTIONOPTIMIZE_MASK ) | RFLR_DETECTIONOPTIMIZE_SF6 ); Write( REG_LR_DETECTIONTHRESHOLD, RFLR_DETECTIONTHRESH_SF6 ); } else { Write( REG_LR_DETECTOPTIMIZE, ( Read( REG_LR_DETECTOPTIMIZE ) & RFLR_DETECTIONOPTIMIZE_MASK ) | RFLR_DETECTIONOPTIMIZE_SF7_TO_SF12 ); Write( REG_LR_DETECTIONTHRESHOLD, RFLR_DETECTIONTHRESH_SF7_TO_SF12 ); } } break; } } void SX1276::SetTxConfig( ModemType modem, int8_t power, uint32_t fdev, uint32_t bandwidth, uint32_t datarate, uint8_t coderate, uint16_t preambleLen, bool fixLen, bool crcOn, bool freqHopOn, uint8_t hopPeriod, bool iqInverted, uint32_t timeout ) { uint8_t paConfig = 0; uint8_t paDac = 0; SetModem( modem ); paConfig = Read( REG_PACONFIG ); paDac = Read( REG_PADAC ); paConfig = ( paConfig & RF_PACONFIG_PASELECT_MASK ) | GetPaSelect( this->settings.Channel ); paConfig = ( paConfig & RF_PACONFIG_MAX_POWER_MASK ) | 0x70; if( ( paConfig & RF_PACONFIG_PASELECT_PABOOST ) == RF_PACONFIG_PASELECT_PABOOST ) { if( power > 17 ) { paDac = ( paDac & RF_PADAC_20DBM_MASK ) | RF_PADAC_20DBM_ON; } else { paDac = ( paDac & RF_PADAC_20DBM_MASK ) | RF_PADAC_20DBM_OFF; } if( ( paDac & RF_PADAC_20DBM_ON ) == RF_PADAC_20DBM_ON ) { if( power < 5 ) { power = 5; } if( power > 20 ) { power = 20; } paConfig = ( paConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power - 5 ) & 0x0F ); } else { if( power < 2 ) { power = 2; } if( power > 17 ) { power = 17; } paConfig = ( paConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power - 2 ) & 0x0F ); } } else { if( power < -1 ) { power = -1; } if( power > 14 ) { power = 14; } paConfig = ( paConfig & RF_PACONFIG_OUTPUTPOWER_MASK ) | ( uint8_t )( ( uint16_t )( power + 1 ) & 0x0F ); } Write( REG_PACONFIG, paConfig ); Write( REG_PADAC, paDac ); switch( modem ) { case MODEM_FSK: { this->settings.Fsk.Power = power; this->settings.Fsk.Fdev = fdev; this->settings.Fsk.Bandwidth = bandwidth; this->settings.Fsk.Datarate = datarate; this->settings.Fsk.PreambleLen = preambleLen; this->settings.Fsk.FixLen = fixLen; this->settings.Fsk.CrcOn = crcOn; this->settings.Fsk.IqInverted = iqInverted; this->settings.Fsk.TxTimeout = timeout; fdev = ( uint16_t )( ( double )fdev / ( double )FREQ_STEP ); Write( REG_FDEVMSB, ( uint8_t )( fdev >> 8 ) ); Write( REG_FDEVLSB, ( uint8_t )( fdev & 0xFF ) ); datarate = ( uint16_t )( ( double )XTAL_FREQ / ( double )datarate ); Write( REG_BITRATEMSB, ( uint8_t )( datarate >> 8 ) ); Write( REG_BITRATELSB, ( uint8_t )( datarate & 0xFF ) ); Write( REG_PREAMBLEMSB, ( preambleLen >> 8 ) & 0x00FF ); Write( REG_PREAMBLELSB, preambleLen & 0xFF ); Write( REG_PACKETCONFIG1, ( Read( REG_PACKETCONFIG1 ) & RF_PACKETCONFIG1_CRC_MASK & RF_PACKETCONFIG1_PACKETFORMAT_MASK ) | ( ( fixLen == 1 ) ? RF_PACKETCONFIG1_PACKETFORMAT_FIXED : RF_PACKETCONFIG1_PACKETFORMAT_VARIABLE ) | ( crcOn << 4 ) ); } break; case MODEM_LORA: { this->settings.LoRa.Power = power; if( bandwidth > 2 ) { // Fatal error: When using LoRa modem only bandwidths 125, 250 and 500 kHz are supported while( 1 ); } bandwidth += 7; this->settings.LoRa.Bandwidth = bandwidth; this->settings.LoRa.Datarate = datarate; this->settings.LoRa.Coderate = coderate; this->settings.LoRa.PreambleLen = preambleLen; this->settings.LoRa.FixLen = fixLen; this->settings.LoRa.CrcOn = crcOn; this->settings.LoRa.FreqHopOn = freqHopOn; this->settings.LoRa.HopPeriod = hopPeriod; this->settings.LoRa.IqInverted = iqInverted; this->settings.LoRa.TxTimeout = timeout; if( datarate > 12 ) { datarate = 12; } else if( datarate < 6 ) { datarate = 6; } if( ( ( bandwidth == 7 ) && ( ( datarate == 11 ) || ( datarate == 12 ) ) ) || ( ( bandwidth == 8 ) && ( datarate == 12 ) ) ) { this->settings.LoRa.LowDatarateOptimize = 0x01; } else { this->settings.LoRa.LowDatarateOptimize = 0x00; } if( this->settings.LoRa.FreqHopOn == true ) { Write( REG_LR_PLLHOP, ( Read( REG_LR_PLLHOP ) & RFLR_PLLHOP_FASTHOP_MASK ) | RFLR_PLLHOP_FASTHOP_ON ); Write( REG_LR_HOPPERIOD, this->settings.LoRa.HopPeriod ); } Write( REG_LR_MODEMCONFIG1, ( Read( REG_LR_MODEMCONFIG1 ) & RFLR_MODEMCONFIG1_BW_MASK & RFLR_MODEMCONFIG1_CODINGRATE_MASK & RFLR_MODEMCONFIG1_IMPLICITHEADER_MASK ) | ( bandwidth << 4 ) | ( coderate << 1 ) | fixLen ); Write( REG_LR_MODEMCONFIG2, ( Read( REG_LR_MODEMCONFIG2 ) & RFLR_MODEMCONFIG2_SF_MASK & RFLR_MODEMCONFIG2_RXPAYLOADCRC_MASK ) | ( datarate << 4 ) | ( crcOn << 2 ) ); Write( REG_LR_MODEMCONFIG3, ( Read( REG_LR_MODEMCONFIG3 ) & RFLR_MODEMCONFIG3_LOWDATARATEOPTIMIZE_MASK ) | ( this->settings.LoRa.LowDatarateOptimize << 3 ) ); Write( REG_LR_PREAMBLEMSB, ( preambleLen >> 8 ) & 0x00FF ); Write( REG_LR_PREAMBLELSB, preambleLen & 0xFF ); if( datarate == 6 ) { Write( REG_LR_DETECTOPTIMIZE, ( Read( REG_LR_DETECTOPTIMIZE ) & RFLR_DETECTIONOPTIMIZE_MASK ) | RFLR_DETECTIONOPTIMIZE_SF6 ); Write( REG_LR_DETECTIONTHRESHOLD, RFLR_DETECTIONTHRESH_SF6 ); } else { Write( REG_LR_DETECTOPTIMIZE, ( Read( REG_LR_DETECTOPTIMIZE ) & RFLR_DETECTIONOPTIMIZE_MASK ) | RFLR_DETECTIONOPTIMIZE_SF7_TO_SF12 ); Write( REG_LR_DETECTIONTHRESHOLD, RFLR_DETECTIONTHRESH_SF7_TO_SF12 ); } } break; } } double SX1276::TimeOnAir( ModemType modem, uint8_t pktLen ) { double airTime = 0.0; switch( modem ) { case MODEM_FSK: { airTime = ceil( ( 8 * ( this->settings.Fsk.PreambleLen + ( ( Read( REG_SYNCCONFIG ) & ~RF_SYNCCONFIG_SYNCSIZE_MASK ) + 1 ) + ( ( this->settings.Fsk.FixLen == 0x01 ) ? 0.0 : 1.0 ) + ( ( ( Read( REG_PACKETCONFIG1 ) & ~RF_PACKETCONFIG1_ADDRSFILTERING_MASK ) != 0x00 ) ? 1.0 : 0 ) + pktLen + ( ( this->settings.Fsk.CrcOn == 0x01 ) ? 2.0 : 0 ) ) / this->settings.Fsk.Datarate ) * 1e6 ); } break; case MODEM_LORA: { double bw = 0.0; // REMARK: When using LoRa modem only bandwidths 125, 250 and 500 kHz are supported switch( this->settings.LoRa.Bandwidth ) { //case 0: // 7.8 kHz // bw = 78e2; // break; //case 1: // 10.4 kHz // bw = 104e2; // break; //case 2: // 15.6 kHz // bw = 156e2; // break; //case 3: // 20.8 kHz // bw = 208e2; // break; //case 4: // 31.2 kHz // bw = 312e2; // break; //case 5: // 41.4 kHz // bw = 414e2; // break; //case 6: // 62.5 kHz // bw = 625e2; // break; case 7: // 125 kHz bw = 125e3; break; case 8: // 250 kHz bw = 250e3; break; case 9: // 500 kHz bw = 500e3; break; } // Symbol rate : time for one symbol (secs) double rs = bw / ( 1 << this->settings.LoRa.Datarate ); double ts = 1 / rs; // time of preamble double tPreamble = ( this->settings.LoRa.PreambleLen + 4.25 ) * ts; // Symbol length of payload and time double tmp = ceil( ( 8 * pktLen - 4 * this->settings.LoRa.Datarate + 28 + 16 * this->settings.LoRa.CrcOn - ( this->settings.LoRa.FixLen ? 20 : 0 ) ) / ( double )( 4 * this->settings.LoRa.Datarate - ( ( this->settings.LoRa.LowDatarateOptimize > 0 ) ? 8 : 0 ) ) ) * ( this->settings.LoRa.Coderate + 4 ); double nPayload = 8 + ( ( tmp > 0 ) ? tmp : 0 ); double tPayload = nPayload * ts; // Time on air double tOnAir = tPreamble + tPayload; // return us secs airTime = floor( tOnAir * 1e6 + 0.999 ); } break; } return airTime; } void SX1276::Send( uint8_t *buffer, uint8_t size ) { uint32_t txTimeout = 0; this->settings.State = IDLE; switch( this->settings.Modem ) { case MODEM_FSK: { this->settings.FskPacketHandler.NbBytes = 0; this->settings.FskPacketHandler.Size = size; if( this->settings.Fsk.FixLen == false ) { WriteFifo( ( uint8_t* )&size, 1 ); } else { Write( REG_PAYLOADLENGTH, size ); } if( ( size > 0 ) && ( size <= 64 ) ) { this->settings.FskPacketHandler.ChunkSize = size; } else { this->settings.FskPacketHandler.ChunkSize = 32; } // Write payload buffer WriteFifo( buffer, this->settings.FskPacketHandler.ChunkSize ); this->settings.FskPacketHandler.NbBytes += this->settings.FskPacketHandler.ChunkSize; txTimeout = this->settings.Fsk.TxTimeout; } break; case MODEM_LORA: { if( this->settings.LoRa.IqInverted == true ) { Write( REG_LR_INVERTIQ, ( ( Read( REG_LR_INVERTIQ ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK ) | RFLR_INVERTIQ_RX_OFF | RFLR_INVERTIQ_TX_ON ) ); } else { Write( REG_LR_INVERTIQ, ( ( Read( REG_LR_INVERTIQ ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK ) | RFLR_INVERTIQ_RX_OFF | RFLR_INVERTIQ_TX_OFF ) ); } this->settings.LoRaPacketHandler.Size = size; // Initializes the payload size Write( REG_LR_PAYLOADLENGTH, size ); // Full buffer used for Tx Write( REG_LR_FIFOTXBASEADDR, 0 ); Write( REG_LR_FIFOADDRPTR, 0 ); // FIFO operations can not take place in Sleep mode if( ( Read( REG_OPMODE ) & ~RF_OPMODE_MASK ) == RF_OPMODE_SLEEP ) { Standby( ); wait_ms( 1 ); } // Write payload buffer WriteFifo( buffer, size ); txTimeout = this->settings.LoRa.TxTimeout; } break; } Tx( txTimeout ); } void SX1276::Sleep( void ) { // Initialize driver timeout timers txTimeoutTimer.detach( ); rxTimeoutTimer.detach( ); SetOpMode( RF_OPMODE_SLEEP ); } void SX1276::Standby( void ) { txTimeoutTimer.detach( ); rxTimeoutTimer.detach( ); SetOpMode( RF_OPMODE_STANDBY ); } void SX1276::Rx( uint32_t timeout ) { bool rxContinuous = false; switch( this->settings.Modem ) { case MODEM_FSK: { rxContinuous = this->settings.Fsk.RxContinuous; // DIO0=PayloadReady // DIO1=FifoLevel // DIO2=SyncAddr // DIO3=FifoEmpty // DIO4=Preamble // DIO5=ModeReady Write( REG_DIOMAPPING1, ( Read( REG_DIOMAPPING1 ) & RF_DIOMAPPING1_DIO0_MASK & RF_DIOMAPPING1_DIO1_MASK & RF_DIOMAPPING1_DIO2_MASK ) | RF_DIOMAPPING1_DIO0_00 | RF_DIOMAPPING1_DIO2_11 ); Write( REG_DIOMAPPING2, ( Read( REG_DIOMAPPING2 ) & RF_DIOMAPPING2_DIO4_MASK & RF_DIOMAPPING2_MAP_MASK ) | RF_DIOMAPPING2_DIO4_11 | RF_DIOMAPPING2_MAP_PREAMBLEDETECT ); this->settings.FskPacketHandler.FifoThresh = Read( REG_FIFOTHRESH ) & 0x3F; this->settings.FskPacketHandler.PreambleDetected = false; this->settings.FskPacketHandler.SyncWordDetected = false; this->settings.FskPacketHandler.NbBytes = 0; this->settings.FskPacketHandler.Size = 0; } break; case MODEM_LORA: { if( this->settings.LoRa.IqInverted == true ) { Write( REG_LR_INVERTIQ, ( ( Read( REG_LR_INVERTIQ ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK ) | RFLR_INVERTIQ_RX_ON | RFLR_INVERTIQ_TX_OFF ) ); } else { Write( REG_LR_INVERTIQ, ( ( Read( REG_LR_INVERTIQ ) & RFLR_INVERTIQ_TX_MASK & RFLR_INVERTIQ_RX_MASK ) | RFLR_INVERTIQ_RX_OFF | RFLR_INVERTIQ_TX_OFF ) ); } rxContinuous = this->settings.LoRa.RxContinuous; if( this->settings.LoRa.FreqHopOn == true ) { Write( REG_LR_IRQFLAGSMASK, //RFLR_IRQFLAGS_RXTIMEOUT | //RFLR_IRQFLAGS_RXDONE | //RFLR_IRQFLAGS_PAYLOADCRCERROR | RFLR_IRQFLAGS_VALIDHEADER | RFLR_IRQFLAGS_TXDONE | RFLR_IRQFLAGS_CADDONE | //RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL | RFLR_IRQFLAGS_CADDETECTED ); // DIO0=RxDone, DIO2=FhssChangeChannel Write( REG_DIOMAPPING1, ( Read( REG_DIOMAPPING1 ) & RFLR_DIOMAPPING1_DIO0_MASK & RFLR_DIOMAPPING1_DIO2_MASK ) | RFLR_DIOMAPPING1_DIO0_00 | RFLR_DIOMAPPING1_DIO2_00 ); } else { Write( REG_LR_IRQFLAGSMASK, //RFLR_IRQFLAGS_RXTIMEOUT | //RFLR_IRQFLAGS_RXDONE | //RFLR_IRQFLAGS_PAYLOADCRCERROR | RFLR_IRQFLAGS_VALIDHEADER | RFLR_IRQFLAGS_TXDONE | RFLR_IRQFLAGS_CADDONE | RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL | RFLR_IRQFLAGS_CADDETECTED ); // DIO0=RxDone Write( REG_DIOMAPPING1, ( Read( REG_DIOMAPPING1 ) & RFLR_DIOMAPPING1_DIO0_MASK ) | RFLR_DIOMAPPING1_DIO0_00 ); } Write( REG_LR_FIFORXBASEADDR, 0 ); Write( REG_LR_FIFOADDRPTR, 0 ); } break; } memset( rxBuffer, 0, ( size_t )RX_BUFFER_SIZE ); this->settings.State = RX; if( timeout != 0 ) { rxTimeoutTimer.attach_us( this, &SX1276::OnTimeoutIrq, timeout ); } if( this->settings.Modem == MODEM_FSK ) { SetOpMode( RF_OPMODE_RECEIVER ); if( rxContinuous == false ) { rxTimeoutSyncWord.attach_us( this, &SX1276::OnTimeoutIrq, ( 8.0 * ( this->settings.Fsk.PreambleLen + ( ( Read( REG_SYNCCONFIG ) & ~RF_SYNCCONFIG_SYNCSIZE_MASK ) + 1.0 ) + 1.0 ) / ( double )this->settings.Fsk.Datarate ) * 1e6 ) ; } } else { if( rxContinuous == true ) { SetOpMode( RFLR_OPMODE_RECEIVER ); } else { SetOpMode( RFLR_OPMODE_RECEIVER_SINGLE ); } } } void SX1276::Tx( uint32_t timeout ) { switch( this->settings.Modem ) { case MODEM_FSK: { // DIO0=PacketSent // DIO1=FifoLevel // DIO2=FifoFull // DIO3=FifoEmpty // DIO4=LowBat // DIO5=ModeReady Write( REG_DIOMAPPING1, ( Read( REG_DIOMAPPING1 ) & RF_DIOMAPPING1_DIO0_MASK & RF_DIOMAPPING1_DIO1_MASK & RF_DIOMAPPING1_DIO2_MASK ) ); Write( REG_DIOMAPPING2, ( Read( REG_DIOMAPPING2 ) & RF_DIOMAPPING2_DIO4_MASK & RF_DIOMAPPING2_MAP_MASK ) ); this->settings.FskPacketHandler.FifoThresh = Read( REG_FIFOTHRESH ) & 0x3F; } break; case MODEM_LORA: { if( this->settings.LoRa.FreqHopOn == true ) { Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT | RFLR_IRQFLAGS_RXDONE | RFLR_IRQFLAGS_PAYLOADCRCERROR | RFLR_IRQFLAGS_VALIDHEADER | //RFLR_IRQFLAGS_TXDONE | RFLR_IRQFLAGS_CADDONE | //RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL | RFLR_IRQFLAGS_CADDETECTED ); // DIO0=TxDone Write( REG_DIOMAPPING1, ( Read( REG_DIOMAPPING1 ) & RFLR_DIOMAPPING1_DIO0_MASK ) | RFLR_DIOMAPPING1_DIO0_01 ); // DIO2=FhssChangeChannel Write( REG_DIOMAPPING1, ( Read( REG_DIOMAPPING1 ) & RFLR_DIOMAPPING1_DIO2_MASK ) | RFLR_DIOMAPPING1_DIO2_00 ); } else { Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT | RFLR_IRQFLAGS_RXDONE | RFLR_IRQFLAGS_PAYLOADCRCERROR | RFLR_IRQFLAGS_VALIDHEADER | //RFLR_IRQFLAGS_TXDONE | RFLR_IRQFLAGS_CADDONE | RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL | RFLR_IRQFLAGS_CADDETECTED ); // DIO0=TxDone Write( REG_DIOMAPPING1, ( Read( REG_DIOMAPPING1 ) & RFLR_DIOMAPPING1_DIO0_MASK ) | RFLR_DIOMAPPING1_DIO0_01 ); } } break; } this->settings.State = TX; txTimeoutTimer.attach_us( this, &SX1276::OnTimeoutIrq, timeout ); SetOpMode( RF_OPMODE_TRANSMITTER ); } void SX1276::StartCad( void ) { switch( this->settings.Modem ) { case MODEM_FSK: { } break; case MODEM_LORA: { Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT | RFLR_IRQFLAGS_RXDONE | RFLR_IRQFLAGS_PAYLOADCRCERROR | RFLR_IRQFLAGS_VALIDHEADER | RFLR_IRQFLAGS_TXDONE | //RFLR_IRQFLAGS_CADDONE | RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL // | //RFLR_IRQFLAGS_CADDETECTED ); // DIO3=CADDone Write( REG_DIOMAPPING1, ( Read( REG_DIOMAPPING1 ) & RFLR_DIOMAPPING1_DIO0_MASK ) | RFLR_DIOMAPPING1_DIO0_00 ); this->settings.State = CAD; SetOpMode( RFLR_OPMODE_CAD ); } break; default: break; } } int16_t SX1276::GetRssi( ModemType modem ) { int16_t rssi = 0; switch( modem ) { case MODEM_FSK: rssi = -( Read( REG_RSSIVALUE ) >> 1 ); break; case MODEM_LORA: if( this->settings.Channel > RF_MID_BAND_THRESH ) { rssi = RSSI_OFFSET_HF + Read( REG_LR_RSSIVALUE ); } else { rssi = RSSI_OFFSET_LF + Read( REG_LR_RSSIVALUE ); } break; default: rssi = -1; break; } return rssi; } void SX1276::SetOpMode( uint8_t opMode ) { if( opMode != previousOpMode ) { previousOpMode = opMode; if( opMode == RF_OPMODE_SLEEP ) { SetAntSwLowPower( true ); } else { SetAntSwLowPower( false ); if( opMode == RF_OPMODE_TRANSMITTER ) { SetAntSw( 1 ); } else { SetAntSw( 0 ); } } Write( REG_OPMODE, ( Read( REG_OPMODE ) & RF_OPMODE_MASK ) | opMode ); } } void SX1276::SetModem( ModemType modem ) { if( this->settings.Modem != modem ) { this->settings.Modem = modem; switch( this->settings.Modem ) { default: case MODEM_FSK: SetOpMode( RF_OPMODE_SLEEP ); Write( REG_OPMODE, ( Read( REG_OPMODE ) & RFLR_OPMODE_LONGRANGEMODE_MASK ) | RFLR_OPMODE_LONGRANGEMODE_OFF ); Write( REG_DIOMAPPING1, 0x00 ); Write( REG_DIOMAPPING2, 0x30 ); // DIO5=ModeReady break; case MODEM_LORA: SetOpMode( RF_OPMODE_SLEEP ); Write( REG_OPMODE, ( Read( REG_OPMODE ) & RFLR_OPMODE_LONGRANGEMODE_MASK ) | RFLR_OPMODE_LONGRANGEMODE_ON ); Write( 0x30, 0x00 ); // IF = 0 Write( REG_LR_DETECTOPTIMIZE, ( Read( REG_LR_DETECTOPTIMIZE ) & 0x7F ) ); // Manual IF Write( REG_DIOMAPPING1, 0x00 ); Write( REG_DIOMAPPING2, 0x00 ); break; } } } void SX1276::OnTimeoutIrq( void ) { switch( this->settings.State ) { case RX: if( this->settings.Modem == MODEM_FSK ) { this->settings.FskPacketHandler.PreambleDetected = false; this->settings.FskPacketHandler.SyncWordDetected = false; this->settings.FskPacketHandler.NbBytes = 0; this->settings.FskPacketHandler.Size = 0; // Clear Irqs Write( REG_IRQFLAGS1, RF_IRQFLAGS1_RSSI | RF_IRQFLAGS1_PREAMBLEDETECT | RF_IRQFLAGS1_SYNCADDRESSMATCH ); Write( REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN ); if( this->settings.Fsk.RxContinuous == true ) { // Continuous mode restart Rx chain Write( REG_RXCONFIG, Read( REG_RXCONFIG ) | RF_RXCONFIG_RESTARTRXWITHOUTPLLLOCK ); } else { this->settings.State = IDLE; rxTimeoutSyncWord.detach( ); } } if( ( rxTimeout != NULL ) ) { rxTimeout( ); } break; case TX: this->settings.State = IDLE; if( ( txTimeout != NULL ) ) { txTimeout( ); } break; default: break; } } void SX1276::OnDio0Irq( void ) { __IO uint8_t irqFlags = 0; switch( this->settings.State ) { case RX: //TimerStop( &RxTimeoutTimer ); // RxDone interrupt switch( this->settings.Modem ) { case MODEM_FSK: irqFlags = Read( REG_IRQFLAGS2 ); if( ( irqFlags & RF_IRQFLAGS2_CRCOK ) != RF_IRQFLAGS2_CRCOK ) { // Clear Irqs Write( REG_IRQFLAGS1, RF_IRQFLAGS1_RSSI | RF_IRQFLAGS1_PREAMBLEDETECT | RF_IRQFLAGS1_SYNCADDRESSMATCH ); Write( REG_IRQFLAGS2, RF_IRQFLAGS2_FIFOOVERRUN ); if( this->settings.Fsk.RxContinuous == false ) { this->settings.State = IDLE; rxTimeoutSyncWord.attach_us( this, &SX1276::OnTimeoutIrq, ( 8.0 * ( this->settings.Fsk.PreambleLen + ( ( Read( REG_SYNCCONFIG ) & ~RF_SYNCCONFIG_SYNCSIZE_MASK ) + 1.0 ) + 1.0 ) / ( double )this->settings.Fsk.Datarate ) * 1e6 ) ; } else { // Continuous mode restart Rx chain Write( REG_RXCONFIG, Read( REG_RXCONFIG ) | RF_RXCONFIG_RESTARTRXWITHOUTPLLLOCK ); } rxTimeoutTimer.detach( ); if( ( rxError != NULL ) ) { rxError( ); } this->settings.FskPacketHandler.PreambleDetected = false; this->settings.FskPacketHandler.SyncWordDetected = false; this->settings.FskPacketHandler.NbBytes = 0; this->settings.FskPacketHandler.Size = 0; break; } // Read received packet size if( ( this->settings.FskPacketHandler.Size == 0 ) && ( this->settings.FskPacketHandler.NbBytes == 0 ) ) { if( this->settings.Fsk.FixLen == false ) { ReadFifo( ( uint8_t* )&this->settings.FskPacketHandler.Size, 1 ); } else { this->settings.FskPacketHandler.Size = Read( REG_PAYLOADLENGTH ); } ReadFifo( rxBuffer + this->settings.FskPacketHandler.NbBytes, this->settings.FskPacketHandler.Size - this->settings.FskPacketHandler.NbBytes ); this->settings.FskPacketHandler.NbBytes += ( this->settings.FskPacketHandler.Size - this->settings.FskPacketHandler.NbBytes ); } else { ReadFifo( rxBuffer + this->settings.FskPacketHandler.NbBytes, this->settings.FskPacketHandler.Size - this->settings.FskPacketHandler.NbBytes ); this->settings.FskPacketHandler.NbBytes += ( this->settings.FskPacketHandler.Size - this->settings.FskPacketHandler.NbBytes ); } if( this->settings.Fsk.RxContinuous == false ) { this->settings.State = IDLE; rxTimeoutSyncWord.attach_us( this, &SX1276::OnTimeoutIrq, ( 8.0 * ( this->settings.Fsk.PreambleLen + ( ( Read( REG_SYNCCONFIG ) & ~RF_SYNCCONFIG_SYNCSIZE_MASK ) + 1.0 ) + 1.0 ) / ( double )this->settings.Fsk.Datarate ) * 1e6 ) ; } else { // Continuous mode restart Rx chain Write( REG_RXCONFIG, Read( REG_RXCONFIG ) | RF_RXCONFIG_RESTARTRXWITHOUTPLLLOCK ); } rxTimeoutTimer.detach( ); if( (rxDone != NULL ) ) { rxDone( rxBuffer, this->settings.FskPacketHandler.Size, this->settings.FskPacketHandler.RssiValue, 0 ); } this->settings.FskPacketHandler.PreambleDetected = false; this->settings.FskPacketHandler.SyncWordDetected = false; this->settings.FskPacketHandler.NbBytes = 0; this->settings.FskPacketHandler.Size = 0; break; case MODEM_LORA: { uint8_t snr = 0; // Clear Irq Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_RXDONE ); irqFlags = Read( REG_LR_IRQFLAGS ); if( ( irqFlags & RFLR_IRQFLAGS_PAYLOADCRCERROR_MASK ) == RFLR_IRQFLAGS_PAYLOADCRCERROR ) { // Clear Irq Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_PAYLOADCRCERROR ); if( this->settings.LoRa.RxContinuous == false ) { this->settings.State = IDLE; } rxTimeoutTimer.detach( ); if( ( rxError != NULL ) ) { rxError( ); } break; } this->settings.LoRaPacketHandler.SnrValue = Read( REG_LR_PKTSNRVALUE ); if( this->settings.LoRaPacketHandler.SnrValue & 0x80 ) // The SNR sign bit is 1 { // Invert and divide by 4 snr = ( ( ~this->settings.LoRaPacketHandler.SnrValue + 1 ) & 0xFF ) >> 2; snr = -snr; } else { // Divide by 4 snr = ( this->settings.LoRaPacketHandler.SnrValue & 0xFF ) >> 2; } int16_t rssi = Read( REG_LR_PKTRSSIVALUE ); if( this->settings.LoRaPacketHandler.SnrValue < 0 ) { if( this->settings.Channel > RF_MID_BAND_THRESH ) { this->settings.LoRaPacketHandler.RssiValue = RSSI_OFFSET_HF + rssi + ( rssi >> 4 ) + snr; } else { this->settings.LoRaPacketHandler.RssiValue = RSSI_OFFSET_LF + rssi + ( rssi >> 4 ) + snr; } } else { if( this->settings.Channel > RF_MID_BAND_THRESH ) { this->settings.LoRaPacketHandler.RssiValue = RSSI_OFFSET_HF + rssi + ( rssi >> 4 ); } else { this->settings.LoRaPacketHandler.RssiValue = RSSI_OFFSET_LF + rssi + ( rssi >> 4 ); } } this->settings.LoRaPacketHandler.Size = Read( REG_LR_RXNBBYTES ); ReadFifo( rxBuffer, this->settings.LoRaPacketHandler.Size ); if( this->settings.LoRa.RxContinuous == false ) { this->settings.State = IDLE; } rxTimeoutTimer.detach( ); if( ( rxDone != NULL ) ) { rxDone( rxBuffer, this->settings.LoRaPacketHandler.Size, this->settings.LoRaPacketHandler.RssiValue, this->settings.LoRaPacketHandler.SnrValue ); } } break; default: break; } break; case TX: txTimeoutTimer.detach( ); // TxDone interrupt switch( this->settings.Modem ) { case MODEM_LORA: // Clear Irq Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_TXDONE ); // Intentional fall through case MODEM_FSK: default: this->settings.State = IDLE; if( ( txDone != NULL ) ) { txDone( ); } break; } break; default: break; } } void SX1276::OnDio1Irq( void ) { switch( this->settings.State ) { case RX: switch( this->settings.Modem ) { case MODEM_FSK: // FifoLevel interrupt // Read received packet size if( ( this->settings.FskPacketHandler.Size == 0 ) && ( this->settings.FskPacketHandler.NbBytes == 0 ) ) { if( this->settings.Fsk.FixLen == false ) { ReadFifo( ( uint8_t* )&this->settings.FskPacketHandler.Size, 1 ); } else { this->settings.FskPacketHandler.Size = Read( REG_PAYLOADLENGTH ); } } if( ( this->settings.FskPacketHandler.Size - this->settings.FskPacketHandler.NbBytes ) > this->settings.FskPacketHandler.FifoThresh ) { ReadFifo( ( rxBuffer + this->settings.FskPacketHandler.NbBytes ), this->settings.FskPacketHandler.FifoThresh ); this->settings.FskPacketHandler.NbBytes += this->settings.FskPacketHandler.FifoThresh; } else { ReadFifo( ( rxBuffer + this->settings.FskPacketHandler.NbBytes ), this->settings.FskPacketHandler.Size - this->settings.FskPacketHandler.NbBytes ); this->settings.FskPacketHandler.NbBytes += ( this->settings.FskPacketHandler.Size - this->settings.FskPacketHandler.NbBytes ); } break; case MODEM_LORA: // Sync time out rxTimeoutTimer.detach( ); this->settings.State = IDLE; if( ( rxTimeout != NULL ) ) { rxTimeout( ); } break; default: break; } break; case TX: switch( this->settings.Modem ) { case MODEM_FSK: // FifoLevel interrupt if( ( this->settings.FskPacketHandler.Size - this->settings.FskPacketHandler.NbBytes ) > this->settings.FskPacketHandler.ChunkSize ) { WriteFifo( ( rxBuffer + this->settings.FskPacketHandler.NbBytes ), this->settings.FskPacketHandler.ChunkSize ); this->settings.FskPacketHandler.NbBytes += this->settings.FskPacketHandler.ChunkSize; } else { // Write the last chunk of data WriteFifo( rxBuffer + this->settings.FskPacketHandler.NbBytes, this->settings.FskPacketHandler.Size - this->settings.FskPacketHandler.NbBytes ); this->settings.FskPacketHandler.NbBytes += this->settings.FskPacketHandler.Size - this->settings.FskPacketHandler.NbBytes; } break; case MODEM_LORA: break; default: break; } break; default: break; } } void SX1276::OnDio2Irq( void ) { switch( this->settings.State ) { case RX: switch( this->settings.Modem ) { case MODEM_FSK: if( ( this->settings.FskPacketHandler.PreambleDetected == true ) && ( this->settings.FskPacketHandler.SyncWordDetected == false ) ) { rxTimeoutSyncWord.detach( ); this->settings.FskPacketHandler.SyncWordDetected = true; this->settings.FskPacketHandler.RssiValue = -( Read( REG_RSSIVALUE ) >> 1 ); this->settings.FskPacketHandler.AfcValue = ( int32_t )( double )( ( ( uint16_t )Read( REG_AFCMSB ) << 8 ) | ( uint16_t )Read( REG_AFCLSB ) ) * ( double )FREQ_STEP; this->settings.FskPacketHandler.RxGain = ( Read( REG_LNA ) >> 5 ) & 0x07; } break; case MODEM_LORA: if( this->settings.LoRa.FreqHopOn == true ) { // Clear Irq Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL ); if( ( fhssChangeChannel != NULL ) ) { fhssChangeChannel( ( Read( REG_LR_HOPCHANNEL ) & RFLR_HOPCHANNEL_CHANNEL_MASK ) ); } } break; default: break; } break; case TX: switch( this->settings.Modem ) { case MODEM_FSK: break; case MODEM_LORA: if( this->settings.LoRa.FreqHopOn == true ) { // Clear Irq Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL ); if( ( fhssChangeChannel != NULL ) ) { fhssChangeChannel( ( Read( REG_LR_HOPCHANNEL ) & RFLR_HOPCHANNEL_CHANNEL_MASK ) ); } } break; default: break; } break; default: break; } } void SX1276::OnDio3Irq( void ) { switch( this->settings.Modem ) { case MODEM_FSK: break; case MODEM_LORA: if( ( Read( REG_LR_IRQFLAGS ) & 0x01 ) == 0x01 ) { // Clear Irq Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_CADDETECTED_MASK | RFLR_IRQFLAGS_CADDONE); if( ( cadDone != NULL ) ) { cadDone( true ); } } else { // Clear Irq Write( REG_LR_IRQFLAGS, RFLR_IRQFLAGS_CADDONE ); if( ( cadDone != NULL ) ) { cadDone( false ); } } break; default: break; } } void SX1276::OnDio4Irq( void ) { switch( this->settings.Modem ) { case MODEM_FSK: { if( this->settings.FskPacketHandler.PreambleDetected == false ) { this->settings.FskPacketHandler.PreambleDetected = true; } } break; case MODEM_LORA: break; default: break; } } void SX1276::OnDio5Irq( void ) { switch( this->settings.Modem ) { case MODEM_FSK: break; case MODEM_LORA: break; default: break; } }