Amir Chaudhary
/
Hexmodal-firmware_v3-1_hex_w_3d_14
Implemented LED Indicator Patterns
app/main.cpp
- Committer:
- amirchaudhary
- Date:
- 2019-09-04
- Revision:
- 30:c186bf174348
- Parent:
- 29:ca6caa47ef38
File content as of revision 30:c186bf174348:
/* / _____) _ | | ( (____ _____ ____ _| |_ _____ ____| |__ \____ \| ___ | (_ _) ___ |/ ___) _ \ _____) ) ____| | | || |_| ____( (___| | | | (______/|_____)_|_|_| \__)_____)\____)_| |_| (C)2015 Semtech Description: LoRaMac classA device implementation License: Revised BSD License, see LICENSE.TXT file include in the project Maintainer: Miguel Luis and Gregory Cristian */ #include "mbed.h" #include "board.h" #include "radio.h" #include "LoRaMac.h" #include "Commissioning.h" #include "SerialDisplay.h" /*! * Defines the application data transmission duty cycle. 5s, value in [ms]. */ #define APP_TX_DUTYCYCLE 5000 /*! * Defines a random delay for application data transmission duty cycle. 1s, * value in [ms]. */ #define APP_TX_DUTYCYCLE_RND 1000 /*! * Default datarate */ #define LORAWAN_DEFAULT_DATARATE DR_0 /*! * LoRaWAN confirmed messages */ #define LORAWAN_CONFIRMED_MSG_ON true /*! * LoRaWAN Adaptive Data Rate * * \remark Please note that when ADR is enabled the end-device should be static */ #define LORAWAN_ADR_ON 1 #if defined( USE_BAND_868 ) #include "LoRaMacTest.h" /*! * LoRaWAN ETSI duty cycle control enable/disable * * \remark Please note that ETSI mandates duty cycled transmissions. Use only for test purposes */ #define LORAWAN_DUTYCYCLE_ON false #define USE_SEMTECH_DEFAULT_CHANNEL_LINEUP 1 #if( USE_SEMTECH_DEFAULT_CHANNEL_LINEUP == 1 ) #define LC4 { 867100000, { ( ( DR_5 << 4 ) | DR_0 ) }, 0 } #define LC5 { 867300000, { ( ( DR_5 << 4 ) | DR_0 ) }, 0 } #define LC6 { 867500000, { ( ( DR_5 << 4 ) | DR_0 ) }, 0 } #define LC7 { 867700000, { ( ( DR_5 << 4 ) | DR_0 ) }, 0 } #define LC8 { 867900000, { ( ( DR_5 << 4 ) | DR_0 ) }, 0 } #define LC9 { 868800000, { ( ( DR_7 << 4 ) | DR_7 ) }, 2 } #define LC10 { 868300000, { ( ( DR_6 << 4 ) | DR_6 ) }, 1 } #endif #endif /*! * LoRaWAN application port */ #define LORAWAN_APP_PORT 15 /*! * User application data buffer size */ #define LORAWAN_APP_DATA_SIZE 41 static uint8_t DevEui[] = LORAWAN_DEVICE_EUI; static uint8_t AppEui[] = LORAWAN_APPLICATION_EUI; static uint8_t AppKey[] = LORAWAN_APPLICATION_KEY; #if( OVER_THE_AIR_ACTIVATION == 0 ) static uint8_t NwkSKey[] = LORAWAN_NWKSKEY; static uint8_t AppSKey[] = LORAWAN_APPSKEY; /*! * Device address */ static uint32_t DevAddr = LORAWAN_DEVICE_ADDRESS; #endif /*! * Application port */ static uint8_t AppPort = LORAWAN_APP_PORT; /*! * User application data size */ static uint8_t AppDataSize = LORAWAN_APP_DATA_SIZE; /*! * User application data buffer size */ #define LORAWAN_APP_DATA_MAX_SIZE 64 /*! * User application data */ static uint8_t AppData[LORAWAN_APP_DATA_MAX_SIZE]; /*! * Indicates if the node is sending confirmed or unconfirmed messages */ static uint8_t IsTxConfirmed = LORAWAN_CONFIRMED_MSG_ON; /*! * Defines the application data transmission duty cycle */ static uint32_t TxDutyCycleTime; /*! * Timer to handle the application data transmission duty cycle */ static TimerEvent_t TxNextPacketTimer; /*! * SOME APPLICATION PARAMETERS */ DigitalOut myled(D7); DigitalOut relayPin(D6); AnalogIn BAT_PIN(A2); AnalogIn LIGHT_1_PIN(A1); AnalogIn LIGHT_2_PIN(A5); AnalogIn RH_PIN(PC_2); AnalogIn VCE_PIN(PB_1); /* D7 == Green D8 == Blue */ DigitalOut myGreenLed(D7); // ON = Lora Connected DigitalOut myBlueLed(D8); // Blink twice = Sends data or increments counter value Pelase proceed InterruptIn button1(USER_BUTTON); volatile bool button1_pressed = false; // Used in the main loop volatile bool button1_enabled = true; // Used for debouncing Timeout button1_timeout; // Used for debouncing int press_count; Timeout buttonOptions_timeout; // Used for determining number of presses unsigned int time_window = 5; // Default 3600 seconds in an hour unsigned long long_interval = 31557600; // Default 31557600 seconds in a year unsigned int hb_interval = 43200; // Default 86400 seconds in a day unsigned long test_interval = 2592000; // Default 2592000 seconds in a month time_t next_stest; time_t next_ltest; uint8_t hb_data[5]; uint8_t tdata[10]; uint8_t *data; uint8_t data_len; bool running_test; bool joining; // bool received_downlink; time_t current_time; unsigned long last_hb; unsigned long test_start; uint8_t measurements[5]; unsigned long test_duration; /*! * Specifies the state of the application LED */ static bool AppLedStateOn = false; volatile bool Led3StateChanged = false; /*! * Timer to handle the state of LED1 */ static TimerEvent_t Led1Timer; volatile bool Led1State = false; volatile bool Led1StateChanged = false; /*! * Timer to handle the state of LED2 */ static TimerEvent_t Led2Timer; volatile bool Led2State = false; volatile bool Led2StateChanged = false; enum GreenLedState_e{ GREEN_LED_STATE_INIT=0, GREEN_LED_STATE_JOINING, GREEN_LED_STATE_JOINED }GreenLedState; volatile uint32_t GreenLedTickCounter=0; volatile bool BatteryLowFlag = true; volatile uint32_t GreenLedJoiningCounter=0; static TimerEvent_t GreenLedTimer; static void OnGreenLedTimerEvent( void ) { MibRequestConfirm_t mibReq; LoRaMacStatus_t status; if(BatteryLowFlag == true) { myGreenLed = 0; // OFF } else { // battery ok GreenLedTickCounter++; switch(GreenLedState) { case GREEN_LED_STATE_INIT: { GreenLedState = GREEN_LED_STATE_JOINING; } break; case GREEN_LED_STATE_JOINING: { GreenLedJoiningCounter++; if((GreenLedJoiningCounter % 2) == 0) { GreenLedJoiningCounter = 0; myGreenLed = !myGreenLed; // toggle // check if we have joined the network mibReq.Type = MIB_NETWORK_JOINED; status = LoRaMacMibGetRequestConfirm( &mibReq ); if( status == LORAMAC_STATUS_OK ) { if( mibReq.Param.IsNetworkJoined == true ) { GreenLedState = GREEN_LED_STATE_JOINED; } } } } break; case GREEN_LED_STATE_JOINED: { myGreenLed = 1; } break; } } } static TimerEvent_t BatteryCheckTimer; volatile bool BatteryCheckFlag=false; static void OnBatteryCheckTimerEvent( void ) { BatteryCheckFlag = true; } /*! * Indicates if a new packet can be sent */ static bool NextTx = true; /*! * Device states */ // Application Globals static enum eDeviceState { DEVICE_STATE_INIT, DEVICE_STATE_JOIN, DEVICE_STATE_SEND, DEVICE_STATE_CYCLE, DEVICE_STATE_SLEEP }DeviceState; static enum eMessageType { MESSAGE_TYPE_HB, MESSAGE_TYPE_SHORT_TEST, MESSAGE_TYPE_LONG_TEST }MessageType; /*! * LoRaWAN compliance tests support data */ struct ComplianceTest_s { bool Running; uint8_t State; bool IsTxConfirmed; uint8_t AppPort; uint8_t AppDataSize; uint8_t *AppDataBuffer; uint16_t DownLinkCounter; bool LinkCheck; uint8_t DemodMargin; uint8_t NbGateways; }ComplianceTest; /* * SerialDisplay managment variables */ /*! * Indicates if the MAC layer network join status has changed. */ static bool IsNetworkJoinedStatusUpdate = false; /*! * Strucure containing the Uplink status */ struct sLoRaMacUplinkStatus { uint8_t Acked; int8_t Datarate; uint16_t UplinkCounter; uint8_t Port; uint8_t *Buffer; uint8_t BufferSize; }LoRaMacUplinkStatus; volatile bool UplinkStatusUpdated = false; /*! * Strucure containing the Downlink status */ struct sLoRaMacDownlinkStatus { int16_t Rssi; int8_t Snr; uint16_t DownlinkCounter; bool RxData; uint8_t Port; uint8_t *Buffer; uint8_t BufferSize; }LoRaMacDownlinkStatus; volatile bool DownlinkStatusUpdated = false; void SerialDisplayRefresh( void ) { MibRequestConfirm_t mibReq; SerialDisplayInit( ); SerialDisplayUpdateActivationMode( OVER_THE_AIR_ACTIVATION ); #if( OVER_THE_AIR_ACTIVATION == 0 ) SerialDisplayUpdateNwkId( LORAWAN_NETWORK_ID ); SerialDisplayUpdateDevAddr( DevAddr ); SerialDisplayUpdateKey( 12, NwkSKey ); SerialDisplayUpdateKey( 13, AppSKey ); #endif SerialDisplayUpdateEui( 5, DevEui ); SerialDisplayUpdateEui( 6, AppEui ); SerialDisplayUpdateKey( 7, AppKey ); mibReq.Type = MIB_NETWORK_JOINED; LoRaMacMibGetRequestConfirm( &mibReq ); SerialDisplayUpdateNetworkIsJoined( mibReq.Param.IsNetworkJoined ); SerialDisplayUpdateAdr( LORAWAN_ADR_ON ); #if defined( USE_BAND_868 ) SerialDisplayUpdateDutyCycle( LORAWAN_DUTYCYCLE_ON ); #else SerialDisplayUpdateDutyCycle( false ); #endif SerialDisplayUpdatePublicNetwork( LORAWAN_PUBLIC_NETWORK ); SerialDisplayUpdateLedState( 3, AppLedStateOn ); } void SerialRxProcess( void ) { if( SerialDisplayReadable( ) == true ) { switch( SerialDisplayGetChar( ) ) { case 'R': case 'r': // Refresh Serial screen SerialDisplayRefresh( ); break; default: break; } } } // Enables button when bouncing is over void button1_enabled_cb(void) { button1_enabled = true; } // ISR handling button pressed event void button1_onpressed_cb(void) { if (button1_enabled) { // Disabled while the button is bouncing button1_enabled = false; button1_pressed = true; // To be read by the main loop button1_timeout.attach(callback(button1_enabled_cb), 0.2); // Debounce time 200 ms } } // **************************** COMMUNICATION PACKET DEFINITION METHODS ******************************** // void heartbeat_message(uint8_t *hb_data, uint8_t *current_date) { hb_data[0] = 0xD2; memcpy(hb_data+1, current_date, 4); } void short_test_result(uint8_t *tdata, uint8_t *test_start_date, uint8_t *measurements) { tdata[0] = 0xD7; memcpy(tdata+1, test_start_date, 4); memcpy(tdata+5, measurements, 5); } void long_test_result(uint8_t *tdata, uint8_t *test_start_date, uint8_t *measurements) { tdata[0] = 0xD8; memcpy(tdata+1, test_start_date, 4); memcpy(tdata+5, measurements, 5); } /*! * \brief Prepares the payload of the frame */ static void PrepareTxFrame( uint8_t port ) { switch( port ) { case 15: { switch ( MessageType ) { case MESSAGE_TYPE_HB: { AppDataSize = 5; heartbeat_message(AppData, (uint8_t *)¤t_time); break; } case MESSAGE_TYPE_SHORT_TEST: { AppDataSize = 10; short_test_result(AppData, (uint8_t *)¤t_time, measurements); break; } case MESSAGE_TYPE_LONG_TEST: { AppDataSize = 10; long_test_result(AppData, (uint8_t *)¤t_time, measurements); break; } default: { AppDataSize = 5; heartbeat_message(AppData, (uint8_t *)¤t_time); break; } } } break; case 224: if( ComplianceTest.LinkCheck == true ) { ComplianceTest.LinkCheck = false; AppDataSize = 3; AppData[0] = 5; AppData[1] = ComplianceTest.DemodMargin; AppData[2] = ComplianceTest.NbGateways; ComplianceTest.State = 1; } else { switch( ComplianceTest.State ) { case 4: ComplianceTest.State = 1; break; case 1: AppDataSize = 2; AppData[0] = ComplianceTest.DownLinkCounter >> 8; AppData[1] = ComplianceTest.DownLinkCounter; break; } } break; default: break; } } /*! * \brief Prepares the payload of the frame * * \retval [0: frame could be send, 1: error] */ static bool SendFrame( void ) { McpsReq_t mcpsReq; LoRaMacTxInfo_t txInfo; if( LoRaMacQueryTxPossible( AppDataSize, &txInfo ) != LORAMAC_STATUS_OK ) { // Send empty frame in order to flush MAC commands mcpsReq.Type = MCPS_UNCONFIRMED; mcpsReq.Req.Unconfirmed.fBuffer = NULL; mcpsReq.Req.Unconfirmed.fBufferSize = 0; mcpsReq.Req.Unconfirmed.Datarate = LORAWAN_DEFAULT_DATARATE; LoRaMacUplinkStatus.Acked = false; LoRaMacUplinkStatus.Port = 0; LoRaMacUplinkStatus.Buffer = NULL; LoRaMacUplinkStatus.BufferSize = 0; SerialDisplayUpdateFrameType( false ); // SerialDisplayPrintDebugStatus( LoRaMacQueryTxPossible( AppDataSize, &txInfo ) ); } else { LoRaMacUplinkStatus.Acked = false; LoRaMacUplinkStatus.Port = AppPort; LoRaMacUplinkStatus.Buffer = AppData; LoRaMacUplinkStatus.BufferSize = AppDataSize; SerialDisplayUpdateFrameType( IsTxConfirmed ); if( IsTxConfirmed == false ) { mcpsReq.Type = MCPS_UNCONFIRMED; mcpsReq.Req.Unconfirmed.fPort = AppPort; mcpsReq.Req.Unconfirmed.fBuffer = AppData; mcpsReq.Req.Unconfirmed.fBufferSize = AppDataSize; mcpsReq.Req.Unconfirmed.Datarate = LORAWAN_DEFAULT_DATARATE; } else { mcpsReq.Type = MCPS_CONFIRMED; mcpsReq.Req.Confirmed.fPort = AppPort; mcpsReq.Req.Confirmed.fBuffer = AppData; mcpsReq.Req.Confirmed.fBufferSize = AppDataSize; mcpsReq.Req.Confirmed.NbTrials = 8; mcpsReq.Req.Confirmed.Datarate = LORAWAN_DEFAULT_DATARATE; } } if( LoRaMacMcpsRequest( &mcpsReq ) == LORAMAC_STATUS_OK ) { if( LoRaMacQueryTxPossible( AppDataSize, &txInfo ) != LORAMAC_STATUS_OK ) { return true; } return false; } return true; } /*! * \brief Function executed on TxNextPacket Timeout event */ static void OnTxNextPacketTimerEvent( void ) { MibRequestConfirm_t mibReq; LoRaMacStatus_t status; TimerStop( &TxNextPacketTimer ); mibReq.Type = MIB_NETWORK_JOINED; status = LoRaMacMibGetRequestConfirm( &mibReq ); if( status == LORAMAC_STATUS_OK ) { if( mibReq.Param.IsNetworkJoined == true ) { DeviceState = DEVICE_STATE_SEND; NextTx = true; } else { DeviceState = DEVICE_STATE_JOIN; } } } /*! * \brief Function executed on Led 1 Timeout event */ static void OnLed1TimerEvent( void ) { TimerStop( &Led1Timer ); // Switch LED 1 OFF Led1State = false; Led1StateChanged = true; } /*! * \brief Function executed on Led 2 Timeout event */ static void OnLed2TimerEvent( void ) { TimerStop( &Led2Timer ); // Switch LED 2 OFF Led2State = false; Led2StateChanged = true; } /*! * \brief MCPS-Confirm event function * * \param [IN] mcpsConfirm - Pointer to the confirm structure, * containing confirm attributes. */ static void McpsConfirm( McpsConfirm_t *mcpsConfirm ) { if( mcpsConfirm->Status == LORAMAC_EVENT_INFO_STATUS_OK ) { switch( mcpsConfirm->McpsRequest ) { case MCPS_UNCONFIRMED: { // Check Datarate // Check TxPower break; } case MCPS_CONFIRMED: { // Check Datarate // Check TxPower // Check AckReceived // Check NbTrials LoRaMacUplinkStatus.Acked = mcpsConfirm->AckReceived; break; } case MCPS_PROPRIETARY: { break; } default: break; } LoRaMacUplinkStatus.Datarate = mcpsConfirm->Datarate; LoRaMacUplinkStatus.UplinkCounter = mcpsConfirm->UpLinkCounter; // Switch LED 1 ON Led1State = true; Led1StateChanged = true; TimerStart( &Led1Timer ); UplinkStatusUpdated = true; } NextTx = true; } /*! * \brief MCPS-Indication event function * * \param [IN] mcpsIndication - Pointer to the indication structure, * containing indication attributes. */ static void McpsIndication( McpsIndication_t *mcpsIndication ) { if( mcpsIndication->Status != LORAMAC_EVENT_INFO_STATUS_OK ) { return; } switch( mcpsIndication->McpsIndication ) { case MCPS_UNCONFIRMED: { break; } case MCPS_CONFIRMED: { break; } case MCPS_PROPRIETARY: { break; } case MCPS_MULTICAST: { break; } default: break; } // Check Multicast // Check Port // Check Datarate // Check FramePending // Check Buffer // Check BufferSize // Check Rssi // Check Snr // Check RxSlot LoRaMacDownlinkStatus.Rssi = mcpsIndication->Rssi; if( mcpsIndication->Snr & 0x80 ) // The SNR sign bit is 1 { // Invert and divide by 4 LoRaMacDownlinkStatus.Snr = ( ( ~mcpsIndication->Snr + 1 ) & 0xFF ) >> 2; LoRaMacDownlinkStatus.Snr = -LoRaMacDownlinkStatus.Snr; } else { // Divide by 4 LoRaMacDownlinkStatus.Snr = ( mcpsIndication->Snr & 0xFF ) >> 2; } LoRaMacDownlinkStatus.DownlinkCounter++; LoRaMacDownlinkStatus.RxData = mcpsIndication->RxData; LoRaMacDownlinkStatus.Port = mcpsIndication->Port; LoRaMacDownlinkStatus.Buffer = mcpsIndication->Buffer; LoRaMacDownlinkStatus.BufferSize = mcpsIndication->BufferSize; if( ComplianceTest.Running == true ) { ComplianceTest.DownLinkCounter++; } if( mcpsIndication->RxData == true ) { switch( mcpsIndication->Port ) { case 1: // The application LED can be controlled on port 1 or 2 case 2: if( mcpsIndication->BufferSize == 1 ) { AppLedStateOn = mcpsIndication->Buffer[0] & 0x01; Led3StateChanged = true; } break; case 224: if( ComplianceTest.Running == false ) { // Check compliance test enable command (i) if( ( mcpsIndication->BufferSize == 4 ) && ( mcpsIndication->Buffer[0] == 0x01 ) && ( mcpsIndication->Buffer[1] == 0x01 ) && ( mcpsIndication->Buffer[2] == 0x01 ) && ( mcpsIndication->Buffer[3] == 0x01 ) ) { IsTxConfirmed = false; AppPort = 224; AppDataSize = 2; ComplianceTest.DownLinkCounter = 0; ComplianceTest.LinkCheck = false; ComplianceTest.DemodMargin = 0; ComplianceTest.NbGateways = 0; ComplianceTest.Running = true; ComplianceTest.State = 1; MibRequestConfirm_t mibReq; mibReq.Type = MIB_ADR; mibReq.Param.AdrEnable = true; LoRaMacMibSetRequestConfirm( &mibReq ); #if defined( USE_BAND_868 ) LoRaMacTestSetDutyCycleOn( false ); #endif } } else { ComplianceTest.State = mcpsIndication->Buffer[0]; switch( ComplianceTest.State ) { case 0: // Check compliance test disable command (ii) IsTxConfirmed = LORAWAN_CONFIRMED_MSG_ON; AppPort = LORAWAN_APP_PORT; AppDataSize = LORAWAN_APP_DATA_SIZE; ComplianceTest.DownLinkCounter = 0; ComplianceTest.Running = false; MibRequestConfirm_t mibReq; mibReq.Type = MIB_ADR; mibReq.Param.AdrEnable = LORAWAN_ADR_ON; LoRaMacMibSetRequestConfirm( &mibReq ); #if defined( USE_BAND_868 ) LoRaMacTestSetDutyCycleOn( LORAWAN_DUTYCYCLE_ON ); #endif break; case 1: // (iii, iv) AppDataSize = 2; break; case 2: // Enable confirmed messages (v) IsTxConfirmed = true; ComplianceTest.State = 1; break; case 3: // Disable confirmed messages (vi) IsTxConfirmed = false; ComplianceTest.State = 1; break; case 4: // (vii) AppDataSize = mcpsIndication->BufferSize; AppData[0] = 4; for( uint8_t i = 1; i < AppDataSize; i++ ) { AppData[i] = mcpsIndication->Buffer[i] + 1; } break; case 5: // (viii) { MlmeReq_t mlmeReq; mlmeReq.Type = MLME_LINK_CHECK; LoRaMacMlmeRequest( &mlmeReq ); } break; case 6: // (ix) { MlmeReq_t mlmeReq; // Disable TestMode and revert back to normal operation IsTxConfirmed = LORAWAN_CONFIRMED_MSG_ON; AppPort = LORAWAN_APP_PORT; AppDataSize = LORAWAN_APP_DATA_SIZE; ComplianceTest.DownLinkCounter = 0; ComplianceTest.Running = false; MibRequestConfirm_t mibReq; mibReq.Type = MIB_ADR; mibReq.Param.AdrEnable = LORAWAN_ADR_ON; LoRaMacMibSetRequestConfirm( &mibReq ); #if defined( USE_BAND_868 ) LoRaMacTestSetDutyCycleOn( LORAWAN_DUTYCYCLE_ON ); #endif mlmeReq.Type = MLME_JOIN; mlmeReq.Req.Join.DevEui = DevEui; mlmeReq.Req.Join.AppEui = AppEui; mlmeReq.Req.Join.AppKey = AppKey; mlmeReq.Req.Join.NbTrials = 3; LoRaMacMlmeRequest( &mlmeReq ); DeviceState = DEVICE_STATE_SLEEP; } break; case 7: // (x) { if( mcpsIndication->BufferSize == 3 ) { MlmeReq_t mlmeReq; mlmeReq.Type = MLME_TXCW; mlmeReq.Req.TxCw.Timeout = ( uint16_t )( ( mcpsIndication->Buffer[1] << 8 ) | mcpsIndication->Buffer[2] ); LoRaMacMlmeRequest( &mlmeReq ); } else if( mcpsIndication->BufferSize == 7 ) { MlmeReq_t mlmeReq; mlmeReq.Type = MLME_TXCW_1; mlmeReq.Req.TxCw.Timeout = ( uint16_t )( ( mcpsIndication->Buffer[1] << 8 ) | mcpsIndication->Buffer[2] ); mlmeReq.Req.TxCw.Frequency = ( uint32_t )( ( mcpsIndication->Buffer[3] << 16 ) | ( mcpsIndication->Buffer[4] << 8 ) | mcpsIndication->Buffer[5] ) * 100; mlmeReq.Req.TxCw.Power = mcpsIndication->Buffer[6]; LoRaMacMlmeRequest( &mlmeReq ); } ComplianceTest.State = 1; } break; default: break; } } break; default: break; } } // Switch LED 2 ON for each received downlink Led2State = true; Led2StateChanged = true; TimerStart( &Led2Timer ); DownlinkStatusUpdated = true; } /*! * \brief MLME-Confirm event function * * \param [IN] mlmeConfirm - Pointer to the confirm structure, * containing confirm attributes. */ static void MlmeConfirm( MlmeConfirm_t *mlmeConfirm ) { switch( mlmeConfirm->MlmeRequest ) { case MLME_JOIN: { if( mlmeConfirm->Status == LORAMAC_EVENT_INFO_STATUS_OK ) { // Status is OK, node has joined the network IsNetworkJoinedStatusUpdate = true; DeviceState = DEVICE_STATE_SEND; MessageType = MESSAGE_TYPE_HB; joining = false; next_stest = current_time + 5; next_ltest = current_time + long_interval; } else { // Join was not successful. Try to join again DeviceState = DEVICE_STATE_JOIN; } break; } case MLME_LINK_CHECK: { if( mlmeConfirm->Status == LORAMAC_EVENT_INFO_STATUS_OK ) { // Check DemodMargin // Check NbGateways if( ComplianceTest.Running == true ) { ComplianceTest.LinkCheck = true; ComplianceTest.DemodMargin = mlmeConfirm->DemodMargin; ComplianceTest.NbGateways = mlmeConfirm->NbGateways; } } break; } default: break; } NextTx = true; UplinkStatusUpdated = true; } // **************************** TEST METHODS ******************************** // void startTest(uint8_t *measurements) { // Determine test length switch (MessageType) { case MESSAGE_TYPE_SHORT_TEST: test_duration = 30; break; case MESSAGE_TYPE_LONG_TEST: test_duration = 5400; break; default: test_duration = 0; break; } // Start test relayPin = 1; AppLedStateOn = 1; Led3StateChanged = true; // Measure voltage preval float battery_reading = BAT_PIN.read()*1000; measurements[0] = (uint8_t) rintf(battery_reading/10); } void endTest(uint8_t *measurements) { // Measure endvals float battery_reading = BAT_PIN.read()*1000; int vce_reading = VCE_PIN.read()*1000; int light_1_reading = LIGHT_1_PIN.read()*1000 - vce_reading; int light_2_reading = LIGHT_2_PIN.read()*1000 - vce_reading; int rh_reading = RH_PIN.read()*1000 - vce_reading; measurements[1] = (uint8_t) rintf(battery_reading/10); measurements[2] = (uint8_t) (light_1_reading/2); measurements[3] = (uint8_t) (light_2_reading/2); measurements[4] = (uint8_t) (rh_reading/2); // End test // relayPin = 0; AppLedStateOn = 0; Led3StateChanged = true; } void button_options_handler(void) { if (press_count >= 4) { // Run long test if 4 or more clicks MessageType = MESSAGE_TYPE_LONG_TEST; startTest(measurements); running_test = true; test_start = current_time; } if (press_count == 2 || press_count == 3) { // Run short test if 2 or 3 clicks MessageType = MESSAGE_TYPE_SHORT_TEST; startTest(measurements); running_test = true; test_start = current_time; } // Reset count press_count = 0; } /** * Main application entry point. */ Serial pc(SERIAL_TX, SERIAL_RX,115200); int MY_SetSysClock_PLL_HSE(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* configure RTC clock for HSE */ SET_BIT(PWR->CR, PWR_CR_DBP); // enable RTC register access as they are in backup domain __HAL_RCC_BACKUPRESET_FORCE(); // force reset RTC subsystem __HAL_RCC_BACKUPRESET_RELEASE(); __HAL_RCC_RTC_CONFIG(RCC_RTCCLKSOURCE_HSE_DIV8); // HSE=8MHZ and RTC clock input is 1MHz(when using HSE as source) /* Enable HSE and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; /* External 8 MHz xtal on OSC_IN/OSC_OUT */ // PLLCLK = (8 MHz * 8)/2 = 32 MHz RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLLMUL_8; RCC_OscInitStruct.PLL.PLLDIV = RCC_PLLDIV_2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { return (-1); // FAIL } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; // 32 MHz RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; // 32 MHz RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; // 32 MHz RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 32 MHz if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { return (-2); // FAIL } /* Enable HSE and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48|RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_MSI; RCC_OscInitStruct.HSIState = RCC_HSI_OFF; RCC_OscInitStruct.MSIState = RCC_MSI_OFF; RCC_OscInitStruct.HSI48State = RCC_HSI48_OFF; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { return (-3); // FAIL } // enable rtc hardware __HAL_RCC_RTC_ENABLE(); wait(1.0); return 0; // OK } void my_patch(void) { int retVal; // Put device into default clock, i.e using MSI = 2MHz HAL_RCC_DeInit(); // Enable HSE clock retVal = MY_SetSysClock_PLL_HSE(); if(retVal< 0) { // fail //pc.printf("Failed to start HSE, ERR= %d\r\n", retVal); // indicate error while(1) { myled = 1; wait(0.2); myled = 0; wait(0.5); } } } int main( void ) { pc.printf("BUILD: %s mbed-os-rev: %d.%d.%d lib-rev: %d\r\n", \ __TIME__, MBED_MAJOR_VERSION, MBED_MINOR_VERSION,MBED_PATCH_VERSION,MBED_LIBRARY_VERSION); pc.printf("OLD: SysClock= %d RCC= %08X CSR= %08X CIER= %08X\r\n", SystemCoreClock, RCC->CR, RCC->CSR, RCC->CIER); my_patch(); pc.printf("\r\nNEW: SysClock= %d RCC= %08X CSR= %08X CIER= %08X\r\n", SystemCoreClock, RCC->CR, RCC->CSR, RCC->CIER); wait(3); LoRaMacPrimitives_t LoRaMacPrimitives; LoRaMacCallback_t LoRaMacCallbacks; MibRequestConfirm_t mibReq; BoardInit( ); SerialDisplayInit( ); SerialDisplayUpdateEui( 5, DevEui ); SerialDisplayUpdateEui( 6, AppEui ); SerialDisplayUpdateKey( 7, AppKey ); #if( OVER_THE_AIR_ACTIVATION == 0 ) SerialDisplayUpdateNwkId( LORAWAN_NETWORK_ID ); SerialDisplayUpdateDevAddr( DevAddr ); SerialDisplayUpdateKey( 12, NwkSKey ); SerialDisplayUpdateKey( 13, AppSKey ); #endif DeviceState = DEVICE_STATE_INIT; set_time(1514764800); relayPin = 0; running_test = false; joining = true; //received_downlink = false; time_t start_time = time(NULL); last_hb = start_time; //button1.mode(PullUp); // Activate pull-up button1.fall(callback(button1_onpressed_cb)); // Attach ISR to handle button press event AppLedStateOn = 0; Led3StateChanged = true; myGreenLed = 0; // INITIAL OFF GreenLedState = GREEN_LED_STATE_INIT; TimerInit( &GreenLedTimer, OnGreenLedTimerEvent ); TimerSetValue( &GreenLedTimer, 100 ); TimerStart( &GreenLedTimer ); TimerInit( &BatteryCheckTimer, OnBatteryCheckTimerEvent ); TimerSetValue( &BatteryCheckTimer, 100 ); // 100msec TimerStart( &BatteryCheckTimer ); while( 1 ) { current_time = time(NULL); SerialRxProcess( ); if( IsNetworkJoinedStatusUpdate == true ) { IsNetworkJoinedStatusUpdate = false; mibReq.Type = MIB_NETWORK_JOINED; LoRaMacMibGetRequestConfirm( &mibReq ); SerialDisplayUpdateNetworkIsJoined( mibReq.Param.IsNetworkJoined ); } if( Led1StateChanged == true ) { Led1StateChanged = false; SerialDisplayUpdateLedState( 1, Led1State ); } if( Led2StateChanged == true ) { Led2StateChanged = false; SerialDisplayUpdateLedState( 2, Led2State ); } if( Led3StateChanged == true ) { Led3StateChanged = false; SerialDisplayUpdateLedState( 3, AppLedStateOn ); } if( UplinkStatusUpdated == true ) { UplinkStatusUpdated = false; SerialDisplayUpdateUplink( LoRaMacUplinkStatus.Acked, LoRaMacUplinkStatus.Datarate, LoRaMacUplinkStatus.UplinkCounter, LoRaMacUplinkStatus.Port, LoRaMacUplinkStatus.Buffer, LoRaMacUplinkStatus.BufferSize ); } if( DownlinkStatusUpdated == true ) { DownlinkStatusUpdated = false; SerialDisplayUpdateLedState( 2, Led2State ); SerialDisplayUpdateDownlink( LoRaMacDownlinkStatus.RxData, LoRaMacDownlinkStatus.Rssi, LoRaMacDownlinkStatus.Snr, LoRaMacDownlinkStatus.DownlinkCounter, LoRaMacDownlinkStatus.Port, LoRaMacDownlinkStatus.Buffer, LoRaMacDownlinkStatus.BufferSize ); } if( BatteryCheckFlag == true) { BatteryCheckFlag = false; // Measure voltage preval float battery_reading = BAT_PIN.read()*3300*2; // pc.printf("VBAT= %d", (int)battery_reading); // Setting min value 2.0V so if relay button is pressed without battery Green LED will be OFF. // Set max value 4.45V as this voltage is seen at the battery pin. if((battery_reading < 2000)||(battery_reading > 4450)) { BatteryLowFlag = true; } else { BatteryLowFlag = false; } } switch( DeviceState ) { case DEVICE_STATE_INIT: { LoRaMacPrimitives.MacMcpsConfirm = McpsConfirm; LoRaMacPrimitives.MacMcpsIndication = McpsIndication; LoRaMacPrimitives.MacMlmeConfirm = MlmeConfirm; LoRaMacCallbacks.GetBatteryLevel = BoardGetBatteryLevel; LoRaMacInitialization( &LoRaMacPrimitives, &LoRaMacCallbacks ); TimerInit( &TxNextPacketTimer, OnTxNextPacketTimerEvent ); TimerInit( &Led1Timer, OnLed1TimerEvent ); TimerSetValue( &Led1Timer, 25 ); TimerInit( &Led2Timer, OnLed2TimerEvent ); TimerSetValue( &Led2Timer, 25 ); mibReq.Type = MIB_ADR; mibReq.Param.AdrEnable = LORAWAN_ADR_ON; LoRaMacMibSetRequestConfirm( &mibReq ); mibReq.Type = MIB_PUBLIC_NETWORK; mibReq.Param.EnablePublicNetwork = LORAWAN_PUBLIC_NETWORK; LoRaMacMibSetRequestConfirm( &mibReq ); // Limiting to just 2nd subband of 8 channels static uint16_t GatewayChannelsMask[] = {0xFF00, 0x0000, 0x0000, 0x0000, 0x0002, 0x0000}; mibReq.Type = MIB_CHANNELS_DEFAULT_MASK; mibReq.Param.ChannelsDefaultMask = GatewayChannelsMask; LoRaMacMibSetRequestConfirm( &mibReq ); mibReq.Type = MIB_CHANNELS_MASK; mibReq.Param.ChannelsMask = GatewayChannelsMask; LoRaMacMibSetRequestConfirm( &mibReq ); #if defined( USE_BAND_868 ) LoRaMacTestSetDutyCycleOn( LORAWAN_DUTYCYCLE_ON ); SerialDisplayUpdateDutyCycle( LORAWAN_DUTYCYCLE_ON ); #if( USE_SEMTECH_DEFAULT_CHANNEL_LINEUP == 1 ) LoRaMacChannelAdd( 3, ( ChannelParams_t )LC4 ); LoRaMacChannelAdd( 4, ( ChannelParams_t )LC5 ); LoRaMacChannelAdd( 5, ( ChannelParams_t )LC6 ); LoRaMacChannelAdd( 6, ( ChannelParams_t )LC7 ); LoRaMacChannelAdd( 7, ( ChannelParams_t )LC8 ); LoRaMacChannelAdd( 8, ( ChannelParams_t )LC9 ); LoRaMacChannelAdd( 9, ( ChannelParams_t )LC10 ); mibReq.Type = MIB_RX2_DEFAULT_CHANNEL; mibReq.Param.Rx2DefaultChannel = ( Rx2ChannelParams_t ){ 869525000, DR_3 }; LoRaMacMibSetRequestConfirm( &mibReq ); mibReq.Type = MIB_RX2_CHANNEL; mibReq.Param.Rx2Channel = ( Rx2ChannelParams_t ){ 869525000, DR_3 }; LoRaMacMibSetRequestConfirm( &mibReq ); #endif #endif SerialDisplayUpdateActivationMode( OVER_THE_AIR_ACTIVATION ); SerialDisplayUpdateAdr( LORAWAN_ADR_ON ); SerialDisplayUpdatePublicNetwork( LORAWAN_PUBLIC_NETWORK ); LoRaMacDownlinkStatus.DownlinkCounter = 0; DeviceState = DEVICE_STATE_JOIN; break; } case DEVICE_STATE_JOIN: { #if( OVER_THE_AIR_ACTIVATION != 0 ) MlmeReq_t mlmeReq; mlmeReq.Type = MLME_JOIN; mlmeReq.Req.Join.DevEui = DevEui; mlmeReq.Req.Join.AppEui = AppEui; mlmeReq.Req.Join.AppKey = AppKey; if( NextTx == true ) { LoRaMacMlmeRequest( &mlmeReq ); } DeviceState = DEVICE_STATE_SLEEP; #else mibReq.Type = MIB_NET_ID; mibReq.Param.NetID = LORAWAN_NETWORK_ID; LoRaMacMibSetRequestConfirm( &mibReq ); mibReq.Type = MIB_DEV_ADDR; mibReq.Param.DevAddr = DevAddr; LoRaMacMibSetRequestConfirm( &mibReq ); mibReq.Type = MIB_NWK_SKEY; mibReq.Param.NwkSKey = NwkSKey; LoRaMacMibSetRequestConfirm( &mibReq ); mibReq.Type = MIB_APP_SKEY; mibReq.Param.AppSKey = AppSKey; LoRaMacMibSetRequestConfirm( &mibReq ); mibReq.Type = MIB_NETWORK_JOINED; mibReq.Param.IsNetworkJoined = true; LoRaMacMibSetRequestConfirm( &mibReq ); DeviceState = DEVICE_STATE_SEND; #endif IsNetworkJoinedStatusUpdate = true; break; } case DEVICE_STATE_SEND: { if( NextTx == true ) { SerialDisplayUpdateUplinkAcked( false ); SerialDisplayUpdateDonwlinkRxData( false ); PrepareTxFrame( AppPort ); NextTx = SendFrame( ); } if( ComplianceTest.Running == true ) { // Schedule next packet transmission TxDutyCycleTime = 5000; // 5000 ms } else { // Schedule next packet transmission TxDutyCycleTime = APP_TX_DUTYCYCLE + randr( -APP_TX_DUTYCYCLE_RND, APP_TX_DUTYCYCLE_RND ); } if ( NextTx == true ) { DeviceState = DEVICE_STATE_SLEEP; // Schedule next packet transmission TimerSetValue( &TxNextPacketTimer, TxDutyCycleTime ); TimerStart( &TxNextPacketTimer ); // char my_str[17] = "Scheduled Resend"; // SerialDisplayPrintDebugLine( my_str, 17 ); } else { DeviceState = DEVICE_STATE_CYCLE; } break; } case DEVICE_STATE_CYCLE: { // DeviceState = DEVICE_STATE_SLEEP; // Schedule next packet transmission // TimerSetValue( &TxNextPacketTimer, TxDutyCycleTime ); // TimerStart( &TxNextPacketTimer ); // Is a test is running if (running_test) { // If it is //check if it's time to end the test if (current_time - test_start >= test_duration) { endTest(measurements); // sendResult(measurements, ttype); DeviceState = DEVICE_STATE_SEND; last_hb = current_time; // Set the times for the next tests switch ( MessageType ) { case MESSAGE_TYPE_SHORT_TEST: { next_stest = test_start + test_interval; break; } default: { // If long test, reset both test types, // to prevent two tests at the same time next_stest = test_start + test_interval; next_ltest = test_start + long_interval; break; } } running_test = false; } } else { // If it isn't // check if downlink action is required //if (received_downlink == true) { // dl_handler(received_data); //} //check if button is pressed if (button1_pressed) { // Set when button is pressed if (press_count == 0) { buttonOptions_timeout.attach(callback(button_options_handler), 2); // Debounce time 300 ms } button1_pressed = false; press_count++; } //check if it's time to run a test if (current_time >= next_stest || current_time >= next_ltest) { // Check what kind of test to run if (current_time >= next_ltest) { MessageType = MESSAGE_TYPE_LONG_TEST; } else { MessageType = MESSAGE_TYPE_SHORT_TEST; } startTest(measurements); running_test = true; test_start = current_time; //check if it's time for a heartbeat } else if (current_time - last_hb >= hb_interval) { // sendHb(); DeviceState = DEVICE_STATE_SEND; MessageType = MESSAGE_TYPE_HB; last_hb = current_time; } } break; } case DEVICE_STATE_SLEEP: { // Wake up through events break; } default: { DeviceState = DEVICE_STATE_INIT; break; } } } }