Quadrature encoder interface by Aaron Berk

Dependents:   TEST_ENCODER

Fork of QEI by Aaron Berk

Files at this revision

API Documentation at this revision

Comitter:
aminomar
Date:
Wed May 04 18:47:39 2016 +0000
Parent:
0:5c2ad81551aa
Commit message:
test encoder;

Changed in this revision

QEI.cpp Show annotated file Show diff for this revision Revisions of this file
QEI.h Show annotated file Show diff for this revision Revisions of this file
diff -r 5c2ad81551aa -r 5f28ceec8280 QEI.cpp
--- a/QEI.cpp	Thu Sep 02 16:48:55 2010 +0000
+++ b/QEI.cpp	Wed May 04 18:47:39 2016 +0000
@@ -1,139 +1,9 @@
-/**
- * @author Aaron Berk
- *
- * @section LICENSE
- *
- * Copyright (c) 2010 ARM Limited
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- *
- * @section DESCRIPTION
- *
- * Quadrature Encoder Interface.
- *
- * A quadrature encoder consists of two code tracks on a disc which are 90
- * degrees out of phase. It can be used to determine how far a wheel has
- * rotated, relative to a known starting position.
- *
- * Only one code track changes at a time leading to a more robust system than
- * a single track, because any jitter around any edge won't cause a state
- * change as the other track will remain constant.
- *
- * Encoders can be a homebrew affair, consisting of infrared emitters/receivers
- * and paper code tracks consisting of alternating black and white sections;
- * alternatively, complete disk and PCB emitter/receiver encoder systems can
- * be bought, but the interface, regardless of implementation is the same.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |  ^  |     |     |     |     |
- *            ---+  ^  +-----+     +-----+     +-----
- *               ^  ^
- *               ^  +-----+     +-----+     +-----+
- * Channel B     ^  |     |     |     |     |     |
- *            ------+     +-----+     +-----+     +-----
- *               ^  ^
- *               ^  ^
- *               90deg
- *
- * The interface uses X2 encoding by default which calculates the pulse count
- * based on reading the current state after each rising and falling edge of
- * channel A.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |     |     |     |     |     |
- *            ---+     +-----+     +-----+     +-----
- *               ^     ^     ^     ^     ^
- *               ^  +-----+  ^  +-----+  ^  +-----+
- * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
- *            ------+  ^  +-----+  ^  +-----+     +--
- *               ^     ^     ^     ^     ^
- *               ^     ^     ^     ^     ^
- * Pulse count 0 1     2     3     4     5  ...
- *
- * This interface can also use X4 encoding which calculates the pulse count
- * based on reading the current state after each rising and falling edge of
- * either channel.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |     |     |     |     |     |
- *            ---+     +-----+     +-----+     +-----
- *               ^     ^     ^     ^     ^
- *               ^  +-----+  ^  +-----+  ^  +-----+
- * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
- *            ------+  ^  +-----+  ^  +-----+     +--
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- * Pulse count 0 1  2  3  4  5  6  7  8  9  ...
- *
- * It defaults
- *
- * An optional index channel can be used which determines when a full
- * revolution has occured.
- *
- * If a 4 pules per revolution encoder was used, with X4 encoding,
- * the following would be observed.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |     |     |     |     |     |
- *            ---+     +-----+     +-----+     +-----
- *               ^     ^     ^     ^     ^
- *               ^  +-----+  ^  +-----+  ^  +-----+
- * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
- *            ------+  ^  +-----+  ^  +-----+     +--
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- *               ^  ^  ^  +--+  ^  ^  +--+  ^
- *               ^  ^  ^  |  |  ^  ^  |  |  ^
- * Index      ------------+  +--------+  +-----------
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- * Pulse count 0 1  2  3  4  5  6  7  8  9  ...
- * Rev.  count 0          1           2
- *
- * Rotational position in degrees can be calculated by:
- *
- * (pulse count / X * N) * 360
- *
- * Where X is the encoding type [e.g. X4 encoding => X=4], and N is the number
- * of pulses per revolution.
- *
- * Linear position can be calculated by:
- *
- * (pulse count / X * N) * (1 / PPI)
- *
- * Where X is encoding type [e.g. X4 encoding => X=44], N is the number of
- * pulses per revolution, and PPI is pulses per inch, or the equivalent for
- * any other unit of displacement. PPI can be calculated by taking the
- * circumference of the wheel or encoder disk and dividing it by the number
- * of pulses per revolution.
- */
 
-/**
- * Includes
- */
 #include "QEI.h"
 
-QEI::QEI(PinName channelA,
-         PinName channelB,
-         PinName index,
-         int pulsesPerRev,
-         Encoding encoding) : channelA_(channelA), channelB_(channelB),
-        index_(index) {
+QEI::QEI(PinName channelA, PinName channelB, PinName index, int pulsesPerRev, Encoding encoding) : 
+         channelA_(channelA), channelB_(channelB), index_(index) 
+         {
 
     pulses_       = 0;
     revolutions_  = 0;
@@ -246,9 +116,9 @@
 
     if (encoding_ == X2_ENCODING) {
 
-        //11->00->11->00 is counter clockwise rotation or "forward".
+        //11->00->11->00 is counter clockwise rotation or "forward". If it follows the sequence, then pulses ++
         if ((prevState_ == 0x3 && currState_ == 0x0) ||
-                (prevState_ == 0x0 && currState_ == 0x3)) {
+            (prevState_ == 0x0 && currState_ == 0x3)) {
 
             pulses_++;
 
diff -r 5c2ad81551aa -r 5f28ceec8280 QEI.h
--- a/QEI.h	Thu Sep 02 16:48:55 2010 +0000
+++ b/QEI.h	Wed May 04 18:47:39 2016 +0000
@@ -1,158 +1,24 @@
-/**
- * @author Aaron Berk
- *
- * @section LICENSE
- *
- * Copyright (c) 2010 ARM Limited
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- *
- * @section DESCRIPTION
- *
- * Quadrature Encoder Interface.
- *
- * A quadrature encoder consists of two code tracks on a disc which are 90
- * degrees out of phase. It can be used to determine how far a wheel has
- * rotated, relative to a known starting position.
- *
- * Only one code track changes at a time leading to a more robust system than
- * a single track, because any jitter around any edge won't cause a state
- * change as the other track will remain constant.
- *
- * Encoders can be a homebrew affair, consisting of infrared emitters/receivers
- * and paper code tracks consisting of alternating black and white sections;
- * alternatively, complete disk and PCB emitter/receiver encoder systems can
- * be bought, but the interface, regardless of implementation is the same.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |  ^  |     |     |     |     |
- *            ---+  ^  +-----+     +-----+     +-----
- *               ^  ^
- *               ^  +-----+     +-----+     +-----+
- * Channel B     ^  |     |     |     |     |     |
- *            ------+     +-----+     +-----+     +-----
- *               ^  ^
- *               ^  ^
- *               90deg
- *
- * The interface uses X2 encoding by default which calculates the pulse count
- * based on reading the current state after each rising and falling edge of
- * channel A.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |     |     |     |     |     |
- *            ---+     +-----+     +-----+     +-----
- *               ^     ^     ^     ^     ^
- *               ^  +-----+  ^  +-----+  ^  +-----+
- * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
- *            ------+  ^  +-----+  ^  +-----+     +--
- *               ^     ^     ^     ^     ^
- *               ^     ^     ^     ^     ^
- * Pulse count 0 1     2     3     4     5  ...
- *
- * This interface can also use X4 encoding which calculates the pulse count
- * based on reading the current state after each rising and falling edge of
- * either channel.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |     |     |     |     |     |
- *            ---+     +-----+     +-----+     +-----
- *               ^     ^     ^     ^     ^
- *               ^  +-----+  ^  +-----+  ^  +-----+
- * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
- *            ------+  ^  +-----+  ^  +-----+     +--
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- * Pulse count 0 1  2  3  4  5  6  7  8  9  ...
- *
- * It defaults
- *
- * An optional index channel can be used which determines when a full
- * revolution has occured.
- *
- * If a 4 pules per revolution encoder was used, with X4 encoding,
- * the following would be observed.
- *
- *               +-----+     +-----+     +-----+
- * Channel A     |     |     |     |     |     |
- *            ---+     +-----+     +-----+     +-----
- *               ^     ^     ^     ^     ^
- *               ^  +-----+  ^  +-----+  ^  +-----+
- * Channel B     ^  |  ^  |  ^  |  ^  |  ^  |     |
- *            ------+  ^  +-----+  ^  +-----+     +--
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- *               ^  ^  ^  +--+  ^  ^  +--+  ^
- *               ^  ^  ^  |  |  ^  ^  |  |  ^
- * Index      ------------+  +--------+  +-----------
- *               ^  ^  ^  ^  ^  ^  ^  ^  ^  ^
- * Pulse count 0 1  2  3  4  5  6  7  8  9  ...
- * Rev.  count 0          1           2
- *
- * Rotational position in degrees can be calculated by:
- *
- * (pulse count / X * N) * 360
- *
- * Where X is the encoding type [e.g. X4 encoding => X=4], and N is the number
- * of pulses per revolution.
- *
- * Linear position can be calculated by:
- *
- * (pulse count / X * N) * (1 / PPI)
- *
- * Where X is encoding type [e.g. X4 encoding => X=44], N is the number of
- * pulses per revolution, and PPI is pulses per inch, or the equivalent for
- * any other unit of displacement. PPI can be calculated by taking the
- * circumference of the wheel or encoder disk and dividing it by the number
- * of pulses per revolution.
- */
 
 #ifndef QEI_H
 #define QEI_H
 
-/**
- * Includes
- */
 #include "mbed.h"
 
-/**
- * Defines
- */
-#define PREV_MASK 0x1 //Mask for the previous state in determining direction
-//of rotation.
-#define CURR_MASK 0x2 //Mask for the current state in determining direction
-//of rotation.
+#define PREV_MASK 0x1 //Mask for the previous state in determining direction of rotation.
+#define CURR_MASK 0x2 //Mask for the current state in determining direction of rotation.
 #define INVALID   0x3 //XORing two states where both bits have changed.
 
-/**
- * Quadrature Encoder Interface.
- */
+
 class QEI {
 
 public:
 
-    typedef enum Encoding {
-
-        X2_ENCODING,
+    typedef enum Encoding 
+    { 
+        X2_ENCODING, 
         X4_ENCODING
-
-    } Encoding;
+                } 
+        Encoding;
 
     /**
      * Constructor.