Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
LSM9DS1.cpp
- Committer:
- altb
- Date:
- 2018-10-25
- Revision:
- 0:6661e1395e30
- Child:
- 2:3695b54eab07
File content as of revision 0:6661e1395e30:
/******************************************************************************
SFE_LSM9DS1.cpp
SFE_LSM9DS1 Library Source File
Jim Lindblom @ SparkFun Electronics
Original Creation Date: February 27, 2015
https://github.com/sparkfun/LSM9DS1_Breakout
This file implements all functions of the LSM9DS1 class. Functions here range
from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
hardware reads and writes. Both SPI and I2C handler functions can be found
towards the bottom of this file.
Development environment specifics:
IDE: Arduino 1.6
Hardware Platform: Arduino Uno
LSM9DS1 Breakout Version: 1.0
This code is beerware; if you see me (or any other SparkFun employee) at the
local, and you've found our code helpful, please buy us a round!
Distributed as-is; no warranty is given.
******************************************************************************/
#include "LSM9DS1.h"
#include "LSM9DS1_Registers.h"
#include "LSM9DS1_Types.h"
#define LSM9DS1_COMMUNICATION_TIMEOUT 1000
float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
extern Serial pc;
int16_t magn_ellipsoid_center[3] = {-425, 655, 204};
float RM[3][3] = {{0.980752, -0.0124288, 0.00453175}, {-0.0124288, 0.977401, 0.0483545}, {0.00453175, 0.0483545, 0.857327}};
LSM9DS1::LSM9DS1(SPI* _spi, DigitalOut* csM_, DigitalOut* csAG_) : spi(_spi)
{
// spi = _spi;
_mAddress = csM_;
_xgAddress = csAG_;
init(IMU_MODE_SPI, 0, 0); // dont know about 0xD6 or 0x3B
}
/*
LSM9DS1::LSM9DS1()
{
//init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
}*/
/*
LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
{
init(interface, xgAddr, mAddr);
}
*/
void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
{
settings.device.commInterface = interface;
settings.device.agAddress = xgAddr;
settings.device.mAddress = mAddr;
settings.gyro.enabled = true;
settings.gyro.enableX = true;
settings.gyro.enableY = true;
settings.gyro.enableZ = true;
// gyro scale can be 245, 500, or 2000
settings.gyro.scale = 500;
// gyro sample rate: value between 1-6
// 1 = 14.9 4 = 238
// 2 = 59.5 5 = 476
// 3 = 119 6 = 952
settings.gyro.sampleRate = 6;
// gyro cutoff frequency: value between 0-3
// Actual value of cutoff frequency depends
// on sample rate.
settings.gyro.bandwidth = 0;
settings.gyro.lowPowerEnable = false;
settings.gyro.HPFEnable = false;
// Gyro HPF cutoff frequency: value between 0-9
// Actual value depends on sample rate. Only applies
// if gyroHPFEnable is true.
settings.gyro.HPFCutoff = 0;
settings.gyro.flipX = false;
settings.gyro.flipY = false;
settings.gyro.flipZ = false;
settings.gyro.orientation = 0;
settings.gyro.latchInterrupt = true;
settings.accel.enabled = true;
settings.accel.enableX = true;
settings.accel.enableY = true;
settings.accel.enableZ = true;
// accel scale can be 2, 4, 8, or 16
settings.accel.scale = 2;
// accel sample rate can be 1-6
// 1 = 10 Hz 4 = 238 Hz
// 2 = 50 Hz 5 = 476 Hz
// 3 = 119 Hz 6 = 952 Hz
settings.accel.sampleRate = 6;
// Accel cutoff freqeuncy can be any value between -1 - 3.
// -1 = bandwidth determined by sample rate
// 0 = 408 Hz 2 = 105 Hz
// 1 = 211 Hz 3 = 50 Hz
settings.accel.bandwidth = -1;
settings.accel.highResEnable = false;
// accelHighResBandwidth can be any value between 0-3
// LP cutoff is set to a factor of sample rate
// 0 = ODR/50 2 = ODR/9
// 1 = ODR/100 3 = ODR/400
settings.accel.highResBandwidth = 0;
settings.mag.enabled = true;
// mag scale can be 4, 8, 12, or 16
settings.mag.scale = 4;
// mag data rate can be 0-7
// 0 = 0.625 Hz 4 = 10 Hz
// 1 = 1.25 Hz 5 = 20 Hz
// 2 = 2.5 Hz 6 = 40 Hz
// 3 = 5 Hz 7 = 80 Hz
settings.mag.sampleRate = 7;
settings.mag.tempCompensationEnable = false;
// magPerformance can be any value between 0-3
// 0 = Low power mode 2 = high performance
// 1 = medium performance 3 = ultra-high performance
settings.mag.XYPerformance = 3;
settings.mag.ZPerformance = 3;
settings.mag.lowPowerEnable = false;
// magOperatingMode can be 0-2
// 0 = continuous conversion
// 1 = single-conversion
// 2 = power down
settings.mag.operatingMode = 0;
settings.temp.enabled = true;
for (int i=0; i<3; i++) {
gBias[i] = 0;
aBias[i] = 0;
mBias[i] = 0;
gBiasRaw[i] = 0;
aBiasRaw[i] = 0;
mBiasRaw[i] = 0;
}
_autoCalc = false;
}
uint16_t LSM9DS1::begin()
{
//! Todo: don't use _xgAddress or _mAddress, duplicating memory
//_xgAddress = settings.device.agAddress;
// _mAddress = settings.device.mAddress;
constrainScales();
// Once we have the scale values, we can calculate the resolution
// of each sensor. That's what these functions are for. One for each sensor
calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
calcaRes(); // Calculate g / ADC tick, stored in aRes variable
// Now, initialize our hardware interface.
if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
initI2C(); // Initialize I2C
else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
initSPI(); // Initialize SPI
// To verify communication, we can read from the WHO_AM_I register of
// each device. Store those in a variable so we can return them.
uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
uint16_t whoAmICombined = (xgTest << 8) | mTest;
if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
return 0;
// Gyro initialization stuff:
initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
// Accelerometer initialization stuff:
initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
// Magnetometer initialization stuff:
initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
// Once everything is initialized, return the WHO_AM_I registers we read:
return whoAmICombined;
}
void LSM9DS1::initGyro()
{
uint8_t tempRegValue = 0;
// CTRL_REG1_G (Default value: 0x00)
// [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
// ODR_G[2:0] - Output data rate selection
// FS_G[1:0] - Gyroscope full-scale selection
// BW_G[1:0] - Gyroscope bandwidth selection
// To disable gyro, set sample rate bits to 0. We'll only set sample
// rate if the gyro is enabled.
if (settings.gyro.enabled) {
tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
}
switch (settings.gyro.scale) {
case 500:
tempRegValue |= (0x1 << 3);
break;
case 2000:
tempRegValue |= (0x3 << 3);
break;
// Otherwise we'll set it to 245 dps (0x0 << 4)
}
tempRegValue |= (settings.gyro.bandwidth & 0x3);
xgWriteByte(CTRL_REG1_G, tempRegValue);
// CTRL_REG2_G (Default value: 0x00)
// [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
// INT_SEL[1:0] - INT selection configuration
// OUT_SEL[1:0] - Out selection configuration
xgWriteByte(CTRL_REG2_G, 0x00);
// CTRL_REG3_G (Default value: 0x00)
// [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
// LP_mode - Low-power mode enable (0: disabled, 1: enabled)
// HP_EN - HPF enable (0:disabled, 1: enabled)
// HPCF_G[3:0] - HPF cutoff frequency
tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
if (settings.gyro.HPFEnable) {
tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
}
xgWriteByte(CTRL_REG3_G, tempRegValue);
// CTRL_REG4 (Default value: 0x38)
// [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
// Zen_G - Z-axis output enable (0:disable, 1:enable)
// Yen_G - Y-axis output enable (0:disable, 1:enable)
// Xen_G - X-axis output enable (0:disable, 1:enable)
// LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
// 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
tempRegValue = 0;
if (settings.gyro.enableZ) tempRegValue |= (1<<5);
if (settings.gyro.enableY) tempRegValue |= (1<<4);
if (settings.gyro.enableX) tempRegValue |= (1<<3);
if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
xgWriteByte(CTRL_REG4, tempRegValue);
// ORIENT_CFG_G (Default value: 0x00)
// [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
// SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
// Orient [2:0] - Directional user orientation selection
tempRegValue = 0;
if (settings.gyro.flipX) tempRegValue |= (1<<5);
if (settings.gyro.flipY) tempRegValue |= (1<<4);
if (settings.gyro.flipZ) tempRegValue |= (1<<3);
xgWriteByte(ORIENT_CFG_G, tempRegValue);
}
void LSM9DS1::initAccel()
{
uint8_t tempRegValue = 0;
// CTRL_REG5_XL (0x1F) (Default value: 0x38)
// [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
// DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
// 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
// Zen_XL - Z-axis output enabled
// Yen_XL - Y-axis output enabled
// Xen_XL - X-axis output enabled
if (settings.accel.enableZ) tempRegValue |= (1<<5);
if (settings.accel.enableY) tempRegValue |= (1<<4);
if (settings.accel.enableX) tempRegValue |= (1<<3);
xgWriteByte(CTRL_REG5_XL, tempRegValue);
// CTRL_REG6_XL (0x20) (Default value: 0x00)
// [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
// ODR_XL[2:0] - Output data rate & power mode selection
// FS_XL[1:0] - Full-scale selection
// BW_SCAL_ODR - Bandwidth selection
// BW_XL[1:0] - Anti-aliasing filter bandwidth selection
tempRegValue = 0;
// To disable the accel, set the sampleRate bits to 0.
if (settings.accel.enabled) {
tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
}
switch (settings.accel.scale) {
case 4:
tempRegValue |= (0x2 << 3);
break;
case 8:
tempRegValue |= (0x3 << 3);
break;
case 16:
tempRegValue |= (0x1 << 3);
break;
// Otherwise it'll be set to 2g (0x0 << 3)
}
if (settings.accel.bandwidth >= 0) {
tempRegValue |= (1<<2); // Set BW_SCAL_ODR
tempRegValue |= (settings.accel.bandwidth & 0x03);
}
xgWriteByte(CTRL_REG6_XL, tempRegValue);
// CTRL_REG7_XL (0x21) (Default value: 0x00)
// [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
// HR - High resolution mode (0: disable, 1: enable)
// DCF[1:0] - Digital filter cutoff frequency
// FDS - Filtered data selection
// HPIS1 - HPF enabled for interrupt function
tempRegValue = 0;
if (settings.accel.highResEnable) {
tempRegValue |= (1<<7); // Set HR bit
tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
}
xgWriteByte(CTRL_REG7_XL, tempRegValue);
}
// This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
// them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
// for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
// the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
// subtract the biases ourselves. This results in a more accurate measurement in general and can
// remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
// is good practice.
void LSM9DS1::calibrate(bool autoCalc)
{
uint8_t data[6] = {0, 0, 0, 0, 0, 0};
uint8_t samples = 0;
int ii;
int32_t aBiasRawTemp[3] = {0, 0, 0};
int32_t gBiasRawTemp[3] = {0, 0, 0};
// Turn on FIFO and set threshold to 32 samples
enableFIFO(true);
setFIFO(FIFO_THS, 0x1F);
while (samples < 0x1F) {
samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
}
for(ii = 0; ii < samples ; ii++) {
// Read the gyro data stored in the FIFO
readGyro();
gBiasRawTemp[0] += gx;
gBiasRawTemp[1] += gy;
gBiasRawTemp[2] += gz;
readAccel();
aBiasRawTemp[0] += ax;
aBiasRawTemp[1] += ay;
aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
}
for (ii = 0; ii < 3; ii++) {
gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
gBias[ii] = calcGyro(gBiasRaw[ii]);
aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
aBias[ii] = calcAccel(aBiasRaw[ii]);
}
enableFIFO(false);
setFIFO(FIFO_OFF, 0x00);
if (autoCalc) _autoCalc = true;
}
void LSM9DS1::calibrateMag(bool loadIn)
{
int i, j;
int16_t magMin[3] = {0, 0, 0};
int16_t magMax[3] = {0, 0, 0}; // The road warrior
for (i=0; i<128; i++) {
while (!magAvailable())
;
readMag();
int16_t magTemp[3] = {0, 0, 0};
magTemp[0] = mx;
magTemp[1] = my;
magTemp[2] = mz;
for (j = 0; j < 3; j++) {
if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
}
}
for (j = 0; j < 3; j++) {
mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
mBias[j] = calcMag(mBiasRaw[j]);
if (loadIn)
magOffset(j, mBiasRaw[j]);
}
}
void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
{
if (axis > 2)
return;
uint8_t msb, lsb;
msb = (offset & 0xFF00) >> 8;
lsb = offset & 0x00FF;
mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
}
void LSM9DS1::initMag()
{
uint8_t tempRegValue = 0;
// CTRL_REG1_M (Default value: 0x10)
// [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
// TEMP_COMP - Temperature compensation
// OM[1:0] - X & Y axes op mode selection
// 00:low-power, 01:medium performance
// 10: high performance, 11:ultra-high performance
// DO[2:0] - Output data rate selection
// ST - Self-test enable
if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
mWriteByte(CTRL_REG1_M, tempRegValue);
// CTRL_REG2_M (Default value 0x00)
// [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
// FS[1:0] - Full-scale configuration
// REBOOT - Reboot memory content (0:normal, 1:reboot)
// SOFT_RST - Reset config and user registers (0:default, 1:reset)
tempRegValue = 0;
switch (settings.mag.scale) {
case 8:
tempRegValue |= (0x1 << 5);
break;
case 12:
tempRegValue |= (0x2 << 5);
break;
case 16:
tempRegValue |= (0x3 << 5);
break;
// Otherwise we'll default to 4 gauss (00)
}
mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
// CTRL_REG3_M (Default value: 0x03)
// [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
// I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
// LP - Low-power mode cofiguration (1:enable)
// SIM - SPI mode selection (0:write-only, 1:read/write enable)
// MD[1:0] - Operating mode
// 00:continuous conversion, 01:single-conversion,
// 10,11: Power-down
tempRegValue = 0;
if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
tempRegValue |= (settings.mag.operatingMode & 0x3);
mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
// CTRL_REG4_M (Default value: 0x00)
// [0][0][0][0][OMZ1][OMZ0][BLE][0]
// OMZ[1:0] - Z-axis operative mode selection
// 00:low-power mode, 01:medium performance
// 10:high performance, 10:ultra-high performance
// BLE - Big/little endian data
tempRegValue = 0;
tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
mWriteByte(CTRL_REG4_M, tempRegValue);
// CTRL_REG5_M (Default value: 0x00)
// [0][BDU][0][0][0][0][0][0]
// BDU - Block data update for magnetic data
// 0:continuous, 1:not updated until MSB/LSB are read
tempRegValue = 0;
mWriteByte(CTRL_REG5_M, tempRegValue);
}
uint8_t LSM9DS1::accelAvailable()
{
uint8_t status = xgReadByte(STATUS_REG_1);
return (status & (1<<0));
}
uint8_t LSM9DS1::gyroAvailable()
{
uint8_t status = xgReadByte(STATUS_REG_1);
return ((status & (1<<1)) >> 1);
}
uint8_t LSM9DS1::tempAvailable()
{
uint8_t status = xgReadByte(STATUS_REG_1);
return ((status & (1<<2)) >> 2);
}
uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
{
uint8_t status;
status = mReadByte(STATUS_REG_M);
return ((status & (1<<axis)) >> axis);
}
void LSM9DS1::readAccel()
{
uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
if (_autoCalc) {
ax -= aBiasRaw[X_AXIS];
ay -= aBiasRaw[Y_AXIS];
az -= aBiasRaw[Z_AXIS];
}
}
int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
{
uint8_t temp[2];
int16_t value;
xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
value = (temp[1] << 8) | temp[0];
if (_autoCalc)
value -= aBiasRaw[axis];
return value;
}
void LSM9DS1::readMag()
{
uint8_t temp[6]; // We'll read six bytes from the mag into temp
mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
}
void LSM9DS1::readMag_calibrated()
{
uint8_t temp[6]; // We'll read six bytes from the mag into temp
mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
mx -=magn_ellipsoid_center[0];
my -=magn_ellipsoid_center[1];
mz -=magn_ellipsoid_center[2];
float dum[3];
for(int i=0;i<3;i++)
dum[i] = RM[i][0] * (float)mx + RM[i][1] * (float)my + RM[i][2] * (float)mz;
mx=(int16_t)dum[0];
my=(int16_t)dum[1];
mz=(int16_t)dum[2];
}
int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
{
uint8_t temp[2];
mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
return (temp[1] << 8) | temp[0];
}
void LSM9DS1::readTemp()
{
uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
temperature = ((int16_t)temp[1] << 8) | temp[0];
}
void LSM9DS1::readGyro()
{
uint8_t temp[6]; // We'll read six bytes from the gyro into temp
xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
if (_autoCalc) {
gx -= gBiasRaw[X_AXIS];
gy -= gBiasRaw[Y_AXIS];
gz -= gBiasRaw[Z_AXIS];
}
}
int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
{
uint8_t temp[2];
int16_t value;
xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
value = (temp[1] << 8) | temp[0];
if (_autoCalc)
value -= gBiasRaw[axis];
return value;
}
float LSM9DS1::calcGyro(int16_t gyro)
{
// Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
return gRes * gyro;
}
float LSM9DS1::calcAccel(int16_t accel)
{
// Return the accel raw reading times our pre-calculated g's / (ADC tick):
return aRes * accel;
}
float LSM9DS1::calcMag(int16_t mag)
{
// Return the mag raw reading times our pre-calculated Gs / (ADC tick):
return mRes * mag;
}
void LSM9DS1::setGyroScale(uint16_t gScl)
{
// Read current value of CTRL_REG1_G:
uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
// Mask out scale bits (3 & 4):
ctrl1RegValue &= 0xE7;
switch (gScl) {
case 500:
ctrl1RegValue |= (0x1 << 3);
settings.gyro.scale = 500;
break;
case 2000:
ctrl1RegValue |= (0x3 << 3);
settings.gyro.scale = 2000;
break;
default: // Otherwise we'll set it to 245 dps (0x0 << 4)
settings.gyro.scale = 245;
break;
}
xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
calcgRes();
}
void LSM9DS1::setAccelScale(uint8_t aScl)
{
// We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
// Mask out accel scale bits:
tempRegValue &= 0xE7;
switch (aScl) {
case 4:
tempRegValue |= (0x2 << 3);
settings.accel.scale = 4;
break;
case 8:
tempRegValue |= (0x3 << 3);
settings.accel.scale = 8;
break;
case 16:
tempRegValue |= (0x1 << 3);
settings.accel.scale = 16;
break;
default: // Otherwise it'll be set to 2g (0x0 << 3)
settings.accel.scale = 2;
break;
}
xgWriteByte(CTRL_REG6_XL, tempRegValue);
// Then calculate a new aRes, which relies on aScale being set correctly:
calcaRes();
}
void LSM9DS1::setMagScale(uint8_t mScl)
{
// We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
uint8_t temp = mReadByte(CTRL_REG2_M);
// Then mask out the mag scale bits:
temp &= 0xFF^(0x3 << 5);
switch (mScl) {
case 8:
temp |= (0x1 << 5);
settings.mag.scale = 8;
break;
case 12:
temp |= (0x2 << 5);
settings.mag.scale = 12;
break;
case 16:
temp |= (0x3 << 5);
settings.mag.scale = 16;
break;
default: // Otherwise we'll default to 4 gauss (00)
settings.mag.scale = 4;
break;
}
// And write the new register value back into CTRL_REG6_XM:
mWriteByte(CTRL_REG2_M, temp);
// We've updated the sensor, but we also need to update our class variables
// First update mScale:
//mScale = mScl;
// Then calculate a new mRes, which relies on mScale being set correctly:
calcmRes();
}
void LSM9DS1::setGyroODR(uint8_t gRate)
{
// Only do this if gRate is not 0 (which would disable the gyro)
if ((gRate & 0x07) != 0) {
// We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
uint8_t temp = xgReadByte(CTRL_REG1_G);
// Then mask out the gyro ODR bits:
temp &= 0xFF^(0x7 << 5);
temp |= (gRate & 0x07) << 5;
// Update our settings struct
settings.gyro.sampleRate = gRate & 0x07;
// And write the new register value back into CTRL_REG1_G:
xgWriteByte(CTRL_REG1_G, temp);
}
}
void LSM9DS1::setAccelODR(uint8_t aRate)
{
// Only do this if aRate is not 0 (which would disable the accel)
if ((aRate & 0x07) != 0) {
// We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
uint8_t temp = xgReadByte(CTRL_REG6_XL);
// Then mask out the accel ODR bits:
temp &= 0x1F;
// Then shift in our new ODR bits:
temp |= ((aRate & 0x07) << 5);
settings.accel.sampleRate = aRate & 0x07;
// And write the new register value back into CTRL_REG1_XM:
xgWriteByte(CTRL_REG6_XL, temp);
}
}
void LSM9DS1::setMagODR(uint8_t mRate)
{
// We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
uint8_t temp = mReadByte(CTRL_REG1_M);
// Then mask out the mag ODR bits:
temp &= 0xFF^(0x7 << 2);
// Then shift in our new ODR bits:
temp |= ((mRate & 0x07) << 2);
settings.mag.sampleRate = mRate & 0x07;
// And write the new register value back into CTRL_REG5_XM:
mWriteByte(CTRL_REG1_M, temp);
}
void LSM9DS1::calcgRes()
{
gRes = ((float) settings.gyro.scale) / 32768.0;
}
void LSM9DS1::calcaRes()
{
aRes = ((float) settings.accel.scale) / 32768.0;
}
void LSM9DS1::calcmRes()
{
//mRes = ((float) settings.mag.scale) / 32768.0;
switch (settings.mag.scale) {
case 4:
mRes = magSensitivity[0];
break;
case 8:
mRes = magSensitivity[1];
break;
case 12:
mRes = magSensitivity[2];
break;
case 16:
mRes = magSensitivity[3];
break;
}
}
/*
void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
h_lactive activeLow, pp_od pushPull)
{
// Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
// those two values.
// [generator] should be an OR'd list of values from the interrupt_generators enum
xgWriteByte(interrupt, generator);
// Configure CTRL_REG8
uint8_t temp;
temp = xgReadByte(CTRL_REG8);
if (activeLow) temp |= (1<<5);
else temp &= ~(1<<5);
if (pushPull) temp &= ~(1<<4);
else temp |= (1<<4);
xgWriteByte(CTRL_REG8, temp);
}*/
void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
{
uint8_t temp = 0;
temp = threshold & 0x7F;
if (sleepOn) temp |= (1<<7);
xgWriteByte(ACT_THS, temp);
xgWriteByte(ACT_DUR, duration);
}
/*
uint8_t LSM9DS1::getInactivity()
{
uint8_t temp = xgReadByte(STATUS_REG_0);
temp &= (0x10);
return temp;
}
void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
{
// Use variables from accel_interrupt_generator, OR'd together to create
// the [generator]value.
uint8_t temp = generator;
if (andInterrupts) temp |= 0x80;
xgWriteByte(INT_GEN_CFG_XL, temp);
}
void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
{
// Write threshold value to INT_GEN_THS_?_XL.
// axis will be 0, 1, or 2 (x, y, z respectively)
xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
// Write duration and wait to INT_GEN_DUR_XL
uint8_t temp;
temp = (duration & 0x7F);
if (wait) temp |= 0x80;
xgWriteByte(INT_GEN_DUR_XL, temp);
}
uint8_t LSM9DS1::getAccelIntSrc()
{
uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
// Check if the IA_XL (interrupt active) bit is set
if (intSrc & (1<<6)) {
return (intSrc & 0x3F);
}
return 0;
}
void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
{
// Use variables from accel_interrupt_generator, OR'd together to create
// the [generator]value.
uint8_t temp = generator;
if (aoi) temp |= 0x80;
if (latch) temp |= 0x40;
xgWriteByte(INT_GEN_CFG_G, temp);
}
void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
{
uint8_t buffer[2];
buffer[0] = (threshold & 0x7F00) >> 8;
buffer[1] = (threshold & 0x00FF);
// Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
// axis will be 0, 1, or 2 (x, y, z respectively)
xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
// Write duration and wait to INT_GEN_DUR_XL
uint8_t temp;
temp = (duration & 0x7F);
if (wait) temp |= 0x80;
xgWriteByte(INT_GEN_DUR_G, temp);
}
uint8_t LSM9DS1::getGyroIntSrc()
{
uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
// Check if the IA_G (interrupt active) bit is set
if (intSrc & (1<<6)) {
return (intSrc & 0x3F);
}
return 0;
}
void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
{
// Mask out non-generator bits (0-4)
uint8_t config = (generator & 0xE0);
// IEA bit is 0 for active-low, 1 for active-high.
if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
// IEL bit is 0 for latched, 1 for not-latched
if (!latch) config |= (1<<1);
// As long as we have at least 1 generator, enable the interrupt
if (generator != 0) config |= (1<<0);
mWriteByte(INT_CFG_M, config);
}
uint8_t LSM9DS1::getMagIntSrc()
{
uint8_t intSrc = mReadByte(INT_SRC_M);
// Check if the INT (interrupt active) bit is set
if (intSrc & (1<<0)) {
return (intSrc & 0xFE);
}
return 0;
}*/
void LSM9DS1::configMagThs(uint16_t threshold)
{
// Write high eight bits of [threshold] to INT_THS_H_M
mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
// Write low eight bits of [threshold] to INT_THS_L_M
mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
}
void LSM9DS1::sleepGyro(bool enable)
{
uint8_t temp = xgReadByte(CTRL_REG9);
if (enable) temp |= (1<<6);
else temp &= ~(1<<6);
xgWriteByte(CTRL_REG9, temp);
}
void LSM9DS1::enableFIFO(bool enable)
{
uint8_t temp = xgReadByte(CTRL_REG9);
if (enable) temp |= (1<<1);
else temp &= ~(1<<1);
xgWriteByte(CTRL_REG9, temp);
}
void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
{
// Limit threshold - 0x1F (31) is the maximum. If more than that was asked
// limit it to the maximum.
uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
}
uint8_t LSM9DS1::getFIFOSamples()
{
return (xgReadByte(FIFO_SRC) & 0x3F);
}
void LSM9DS1::constrainScales()
{
if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
(settings.gyro.scale != 2000)) {
settings.gyro.scale = 245;
}
if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
(settings.accel.scale != 8) && (settings.accel.scale != 16)) {
settings.accel.scale = 2;
}
if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
(settings.mag.scale != 12) && (settings.mag.scale != 16)) {
settings.mag.scale = 4;
}
}
void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
{
// Whether we're using I2C or SPI, write a byte using the
// gyro-specific I2C address or SPI CS pin.
if (settings.device.commInterface == IMU_MODE_I2C) {
printf("yo");
// I2CwriteByte(_xgAddress, subAddress, data);
} else if (settings.device.commInterface == IMU_MODE_SPI) {
SPIwriteByte(_xgAddress, subAddress, data);
}
}
void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
{
// Whether we're using I2C or SPI, write a byte using the
// accelerometer-specific I2C address or SPI CS pin.
// if (settings.device.commInterface == IMU_MODE_I2C)
// return I2CwriteByte(_mAddress, subAddress, data);
if (settings.device.commInterface == IMU_MODE_SPI)
return SPIwriteByte(_mAddress, subAddress, data);
}
uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
{
// Whether we're using I2C or SPI, read a byte using the
// gyro-specific I2C address or SPI CS pin.
//if (settings.device.commInterface == IMU_MODE_I2C)
// return I2CreadByte(_xgAddress, subAddress);
if (settings.device.commInterface == IMU_MODE_SPI)
return SPIreadByte(_xgAddress, subAddress);
}
void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
{
// Whether we're using I2C or SPI, read multiple bytes using the
// gyro-specific I2C address or SPI CS pin.
if (settings.device.commInterface == IMU_MODE_I2C) {
// I2CreadBytes(_xgAddress, subAddress, dest, count);
} else if (settings.device.commInterface == IMU_MODE_SPI) {
SPIreadBytes(_xgAddress, subAddress, dest, count);
}
}
uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
{
// Whether we're using I2C or SPI, read a byte using the
// accelerometer-specific I2C address or SPI CS pin.
//if (settings.device.commInterface == IMU_MODE_I2C)
// return I2CreadByte(_mAddress, subAddress);
if (settings.device.commInterface == IMU_MODE_SPI)
return SPIreadByte(_mAddress, subAddress);
}
void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
{
// Whether we're using I2C or SPI, read multiple bytes using the
// accelerometer-specific I2C address or SPI CS pin.
// if (settings.device.commInterface == IMU_MODE_I2C)
// I2CreadBytes(_mAddress, subAddress, dest, count);
if (settings.device.commInterface == IMU_MODE_SPI)
SPIreadBytes(_mAddress, subAddress, dest, count);
}
void LSM9DS1::initSPI()
{
spi->format(8, 0); //8, 3
spi->frequency(1000000);
*_xgAddress = 1;
*_mAddress = 1;
/*
pinMode(_xgAddress, OUTPUT);
digitalWrite(_xgAddress, HIGH);
pinMode(_mAddress, OUTPUT);
digitalWrite(_mAddress, HIGH);
spi->begin();
// Maximum SPI frequency is 10MHz, could divide by 2 here:
spi->setClockDivider(SPI_CLOCK_DIV2);
// Data is read and written MSb first.
spi->setBitOrder(MSBFIRST);
// Data is captured on rising edge of clock (CPHA = 0)
// Base value of the clock is HIGH (CPOL = 1)
spi->setDataMode(SPI_MODE0);
*/
}
void LSM9DS1::SPIwriteByte(DigitalOut* csPin, uint8_t subAddress, uint8_t data)
{
*csPin = 0;
wait_us(1);
spi->write(subAddress & 0x3F);
spi->write(data & 0xFF);
wait_us(1);
*csPin = 1;
/*
digitalWrite(csPin, LOW); // Initiate communication
// If write, bit 0 (MSB) should be 0
// If single write, bit 1 should be 0
spi->transfer(subAddress & 0x3F); // Send Address
spi->transfer(data); // Send data
digitalWrite(csPin, HIGH); // Close communication
*/
}
uint8_t LSM9DS1::SPIreadByte(DigitalOut* csPin, uint8_t subAddress)
{
uint8_t temp;
// Use the multiple read function to read 1 byte.
// Value is returned to `temp`.
SPIreadBytes(csPin, subAddress, &temp, 1);
return temp;
}
void LSM9DS1::SPIreadBytes(DigitalOut* csPin, uint8_t subAddress,
uint8_t * dest, uint8_t count)
{
// To indicate a read, set bit 0 (msb) of first byte to 1
uint8_t rAddress = 0x80 | (subAddress & 0x3F);
// Mag SPI port is different. If we're reading multiple bytes,
// set bit 1 to 1. The remaining six bytes are the address to be read
if ((csPin == _mAddress) && count > 1)
rAddress |= 0x40;
*csPin = 0;
wait_us(1);
spi->write(rAddress);
for (int i=0; i<count; i++)
dest[i] = spi->write(0xFF);
wait_us(1);
*csPin = 1;
/*
digitalWrite(csPin, LOW); // Initiate communication
spi->transfer(rAddress);
for (int i=0; i<count; i++)
{
dest[i] = spi->transfer(0x00); // Read into destination array
}
digitalWrite(csPin, HIGH); // Close communication
*/
}
void LSM9DS1::initI2C()
{
/*
Wire.begin(); // Initialize I2C library
*/
//already initialized in constructor!
}
// Wire.h read and write protocols
void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
/*
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.write(data); // Put data in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
*/
// char temp_data[2] = {subAddress, data};
// i2c.write(address, temp_data, 2);
}
uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
{
/*
int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
uint8_t data; // `data` will store the register data
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
while ((Wire.available() < 1) && (timeout-- > 0))
delay(1);
if (timeout <= 0)
return 255; //! Bad! 255 will be misinterpreted as a good value.
data = Wire.read(); // Fill Rx buffer with result
return data; // Return data read from slave register
*/
char data;
char temp[1] = {subAddress};
/*
i2c.write(address, temp, 1);
//i2c.write(address & 0xFE);
temp[1] = 0x00;
i2c.write(address, temp, 1);
//i2c.write( address | 0x01);
int a = i2c.read(address, &data, 1);*/
return data;
}
uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
{
/*
int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
Wire.beginTransmission(address); // Initialize the Tx buffer
// Next send the register to be read. OR with 0x80 to indicate multi-read.
Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
Wire.requestFrom(address, count); // Read bytes from slave register address
while ((Wire.available() < count) && (timeout-- > 0))
delay(1);
if (timeout <= 0)
return -1;
for (int i=0; i<count;)
{
if (Wire.available())
{
dest[i++] = Wire.read();
}
}
return count;
*/
int i;
char temp_dest[count];
char temp[1] = {subAddress};
//i2c.write(address, temp, 1);
//i2c.read(address, temp_dest, count);
//i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
for (i=0; i < count; i++) {
dest[i] = temp_dest[i];
}
return count;
}