Ruprecht Altenburger / AHRS
Committer:
altb
Date:
Sat Nov 03 22:52:37 2018 +0000
Revision:
2:3695b54eab07
Parent:
0:6661e1395e30
Changed calib Mag parameters;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
altb 0:6661e1395e30 1 /******************************************************************************
altb 0:6661e1395e30 2 SFE_LSM9DS1.cpp
altb 0:6661e1395e30 3 SFE_LSM9DS1 Library Source File
altb 0:6661e1395e30 4 Jim Lindblom @ SparkFun Electronics
altb 0:6661e1395e30 5 Original Creation Date: February 27, 2015
altb 0:6661e1395e30 6 https://github.com/sparkfun/LSM9DS1_Breakout
altb 0:6661e1395e30 7
altb 0:6661e1395e30 8 This file implements all functions of the LSM9DS1 class. Functions here range
altb 0:6661e1395e30 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
altb 0:6661e1395e30 10 hardware reads and writes. Both SPI and I2C handler functions can be found
altb 0:6661e1395e30 11 towards the bottom of this file.
altb 0:6661e1395e30 12
altb 0:6661e1395e30 13 Development environment specifics:
altb 0:6661e1395e30 14 IDE: Arduino 1.6
altb 0:6661e1395e30 15 Hardware Platform: Arduino Uno
altb 0:6661e1395e30 16 LSM9DS1 Breakout Version: 1.0
altb 0:6661e1395e30 17
altb 0:6661e1395e30 18 This code is beerware; if you see me (or any other SparkFun employee) at the
altb 0:6661e1395e30 19 local, and you've found our code helpful, please buy us a round!
altb 0:6661e1395e30 20
altb 0:6661e1395e30 21 Distributed as-is; no warranty is given.
altb 0:6661e1395e30 22 ******************************************************************************/
altb 0:6661e1395e30 23
altb 0:6661e1395e30 24 #include "LSM9DS1.h"
altb 0:6661e1395e30 25 #include "LSM9DS1_Registers.h"
altb 0:6661e1395e30 26 #include "LSM9DS1_Types.h"
altb 0:6661e1395e30 27
altb 0:6661e1395e30 28 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
altb 0:6661e1395e30 29
altb 0:6661e1395e30 30 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
altb 0:6661e1395e30 31 extern Serial pc;
altb 2:3695b54eab07 32 //int16_t magn_ellipsoid_center[3] = {-425, 655, 204};
altb 2:3695b54eab07 33 magn_ellipsoid_center[3] = {250 1807 -102};
altb 2:3695b54eab07 34 //float RM[3][3] = {{0.980752, -0.0124288, 0.00453175}, {-0.0124288, 0.977401, 0.0483545}, {0.00453175, 0.0483545, 0.857327}};
altb 2:3695b54eab07 35 float RM[3][3] = {{1.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 1.0}};
altb 0:6661e1395e30 36
altb 0:6661e1395e30 37
altb 0:6661e1395e30 38
altb 0:6661e1395e30 39 LSM9DS1::LSM9DS1(SPI* _spi, DigitalOut* csM_, DigitalOut* csAG_) : spi(_spi)
altb 0:6661e1395e30 40 {
altb 0:6661e1395e30 41 // spi = _spi;
altb 0:6661e1395e30 42 _mAddress = csM_;
altb 0:6661e1395e30 43 _xgAddress = csAG_;
altb 0:6661e1395e30 44
altb 0:6661e1395e30 45 init(IMU_MODE_SPI, 0, 0); // dont know about 0xD6 or 0x3B
altb 0:6661e1395e30 46 }
altb 0:6661e1395e30 47
altb 0:6661e1395e30 48
altb 0:6661e1395e30 49 /*
altb 0:6661e1395e30 50 LSM9DS1::LSM9DS1()
altb 0:6661e1395e30 51 {
altb 0:6661e1395e30 52 //init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
altb 0:6661e1395e30 53 }*/
altb 0:6661e1395e30 54
altb 0:6661e1395e30 55 /*
altb 0:6661e1395e30 56 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
altb 0:6661e1395e30 57 {
altb 0:6661e1395e30 58 init(interface, xgAddr, mAddr);
altb 0:6661e1395e30 59 }
altb 0:6661e1395e30 60 */
altb 0:6661e1395e30 61
altb 0:6661e1395e30 62 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
altb 0:6661e1395e30 63 {
altb 0:6661e1395e30 64 settings.device.commInterface = interface;
altb 0:6661e1395e30 65 settings.device.agAddress = xgAddr;
altb 0:6661e1395e30 66 settings.device.mAddress = mAddr;
altb 0:6661e1395e30 67
altb 0:6661e1395e30 68 settings.gyro.enabled = true;
altb 0:6661e1395e30 69 settings.gyro.enableX = true;
altb 0:6661e1395e30 70 settings.gyro.enableY = true;
altb 0:6661e1395e30 71 settings.gyro.enableZ = true;
altb 0:6661e1395e30 72 // gyro scale can be 245, 500, or 2000
altb 0:6661e1395e30 73 settings.gyro.scale = 500;
altb 0:6661e1395e30 74 // gyro sample rate: value between 1-6
altb 0:6661e1395e30 75 // 1 = 14.9 4 = 238
altb 0:6661e1395e30 76 // 2 = 59.5 5 = 476
altb 0:6661e1395e30 77 // 3 = 119 6 = 952
altb 0:6661e1395e30 78 settings.gyro.sampleRate = 6;
altb 0:6661e1395e30 79 // gyro cutoff frequency: value between 0-3
altb 0:6661e1395e30 80 // Actual value of cutoff frequency depends
altb 0:6661e1395e30 81 // on sample rate.
altb 0:6661e1395e30 82 settings.gyro.bandwidth = 0;
altb 0:6661e1395e30 83 settings.gyro.lowPowerEnable = false;
altb 0:6661e1395e30 84 settings.gyro.HPFEnable = false;
altb 0:6661e1395e30 85 // Gyro HPF cutoff frequency: value between 0-9
altb 0:6661e1395e30 86 // Actual value depends on sample rate. Only applies
altb 0:6661e1395e30 87 // if gyroHPFEnable is true.
altb 0:6661e1395e30 88 settings.gyro.HPFCutoff = 0;
altb 0:6661e1395e30 89 settings.gyro.flipX = false;
altb 0:6661e1395e30 90 settings.gyro.flipY = false;
altb 0:6661e1395e30 91 settings.gyro.flipZ = false;
altb 0:6661e1395e30 92 settings.gyro.orientation = 0;
altb 0:6661e1395e30 93 settings.gyro.latchInterrupt = true;
altb 0:6661e1395e30 94
altb 0:6661e1395e30 95 settings.accel.enabled = true;
altb 0:6661e1395e30 96 settings.accel.enableX = true;
altb 0:6661e1395e30 97 settings.accel.enableY = true;
altb 0:6661e1395e30 98 settings.accel.enableZ = true;
altb 0:6661e1395e30 99 // accel scale can be 2, 4, 8, or 16
altb 0:6661e1395e30 100 settings.accel.scale = 2;
altb 0:6661e1395e30 101 // accel sample rate can be 1-6
altb 0:6661e1395e30 102 // 1 = 10 Hz 4 = 238 Hz
altb 0:6661e1395e30 103 // 2 = 50 Hz 5 = 476 Hz
altb 0:6661e1395e30 104 // 3 = 119 Hz 6 = 952 Hz
altb 0:6661e1395e30 105 settings.accel.sampleRate = 6;
altb 0:6661e1395e30 106 // Accel cutoff freqeuncy can be any value between -1 - 3.
altb 0:6661e1395e30 107 // -1 = bandwidth determined by sample rate
altb 0:6661e1395e30 108 // 0 = 408 Hz 2 = 105 Hz
altb 0:6661e1395e30 109 // 1 = 211 Hz 3 = 50 Hz
altb 0:6661e1395e30 110 settings.accel.bandwidth = -1;
altb 0:6661e1395e30 111 settings.accel.highResEnable = false;
altb 0:6661e1395e30 112 // accelHighResBandwidth can be any value between 0-3
altb 0:6661e1395e30 113 // LP cutoff is set to a factor of sample rate
altb 0:6661e1395e30 114 // 0 = ODR/50 2 = ODR/9
altb 0:6661e1395e30 115 // 1 = ODR/100 3 = ODR/400
altb 0:6661e1395e30 116 settings.accel.highResBandwidth = 0;
altb 0:6661e1395e30 117
altb 0:6661e1395e30 118 settings.mag.enabled = true;
altb 0:6661e1395e30 119 // mag scale can be 4, 8, 12, or 16
altb 0:6661e1395e30 120 settings.mag.scale = 4;
altb 0:6661e1395e30 121 // mag data rate can be 0-7
altb 0:6661e1395e30 122 // 0 = 0.625 Hz 4 = 10 Hz
altb 0:6661e1395e30 123 // 1 = 1.25 Hz 5 = 20 Hz
altb 0:6661e1395e30 124 // 2 = 2.5 Hz 6 = 40 Hz
altb 0:6661e1395e30 125 // 3 = 5 Hz 7 = 80 Hz
altb 0:6661e1395e30 126 settings.mag.sampleRate = 7;
altb 0:6661e1395e30 127 settings.mag.tempCompensationEnable = false;
altb 0:6661e1395e30 128 // magPerformance can be any value between 0-3
altb 0:6661e1395e30 129 // 0 = Low power mode 2 = high performance
altb 0:6661e1395e30 130 // 1 = medium performance 3 = ultra-high performance
altb 0:6661e1395e30 131 settings.mag.XYPerformance = 3;
altb 0:6661e1395e30 132 settings.mag.ZPerformance = 3;
altb 0:6661e1395e30 133 settings.mag.lowPowerEnable = false;
altb 0:6661e1395e30 134 // magOperatingMode can be 0-2
altb 0:6661e1395e30 135 // 0 = continuous conversion
altb 0:6661e1395e30 136 // 1 = single-conversion
altb 0:6661e1395e30 137 // 2 = power down
altb 0:6661e1395e30 138 settings.mag.operatingMode = 0;
altb 0:6661e1395e30 139
altb 0:6661e1395e30 140 settings.temp.enabled = true;
altb 0:6661e1395e30 141 for (int i=0; i<3; i++) {
altb 0:6661e1395e30 142 gBias[i] = 0;
altb 0:6661e1395e30 143 aBias[i] = 0;
altb 0:6661e1395e30 144 mBias[i] = 0;
altb 0:6661e1395e30 145 gBiasRaw[i] = 0;
altb 0:6661e1395e30 146 aBiasRaw[i] = 0;
altb 0:6661e1395e30 147 mBiasRaw[i] = 0;
altb 0:6661e1395e30 148 }
altb 0:6661e1395e30 149 _autoCalc = false;
altb 0:6661e1395e30 150 }
altb 0:6661e1395e30 151
altb 0:6661e1395e30 152
altb 0:6661e1395e30 153 uint16_t LSM9DS1::begin()
altb 0:6661e1395e30 154 {
altb 0:6661e1395e30 155 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
altb 0:6661e1395e30 156 //_xgAddress = settings.device.agAddress;
altb 0:6661e1395e30 157 // _mAddress = settings.device.mAddress;
altb 0:6661e1395e30 158
altb 0:6661e1395e30 159 constrainScales();
altb 0:6661e1395e30 160 // Once we have the scale values, we can calculate the resolution
altb 0:6661e1395e30 161 // of each sensor. That's what these functions are for. One for each sensor
altb 0:6661e1395e30 162 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
altb 0:6661e1395e30 163 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
altb 0:6661e1395e30 164 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
altb 0:6661e1395e30 165
altb 0:6661e1395e30 166 // Now, initialize our hardware interface.
altb 0:6661e1395e30 167 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
altb 0:6661e1395e30 168 initI2C(); // Initialize I2C
altb 0:6661e1395e30 169 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
altb 0:6661e1395e30 170 initSPI(); // Initialize SPI
altb 0:6661e1395e30 171
altb 0:6661e1395e30 172 // To verify communication, we can read from the WHO_AM_I register of
altb 0:6661e1395e30 173 // each device. Store those in a variable so we can return them.
altb 0:6661e1395e30 174 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
altb 0:6661e1395e30 175 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
altb 0:6661e1395e30 176 pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
altb 0:6661e1395e30 177 uint16_t whoAmICombined = (xgTest << 8) | mTest;
altb 0:6661e1395e30 178
altb 0:6661e1395e30 179 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
altb 0:6661e1395e30 180 return 0;
altb 0:6661e1395e30 181
altb 0:6661e1395e30 182 // Gyro initialization stuff:
altb 0:6661e1395e30 183 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
altb 0:6661e1395e30 184
altb 0:6661e1395e30 185 // Accelerometer initialization stuff:
altb 0:6661e1395e30 186 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
altb 0:6661e1395e30 187
altb 0:6661e1395e30 188 // Magnetometer initialization stuff:
altb 0:6661e1395e30 189 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
altb 0:6661e1395e30 190
altb 0:6661e1395e30 191 // Once everything is initialized, return the WHO_AM_I registers we read:
altb 0:6661e1395e30 192 return whoAmICombined;
altb 0:6661e1395e30 193 }
altb 0:6661e1395e30 194
altb 0:6661e1395e30 195 void LSM9DS1::initGyro()
altb 0:6661e1395e30 196 {
altb 0:6661e1395e30 197 uint8_t tempRegValue = 0;
altb 0:6661e1395e30 198
altb 0:6661e1395e30 199 // CTRL_REG1_G (Default value: 0x00)
altb 0:6661e1395e30 200 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
altb 0:6661e1395e30 201 // ODR_G[2:0] - Output data rate selection
altb 0:6661e1395e30 202 // FS_G[1:0] - Gyroscope full-scale selection
altb 0:6661e1395e30 203 // BW_G[1:0] - Gyroscope bandwidth selection
altb 0:6661e1395e30 204
altb 0:6661e1395e30 205 // To disable gyro, set sample rate bits to 0. We'll only set sample
altb 0:6661e1395e30 206 // rate if the gyro is enabled.
altb 0:6661e1395e30 207 if (settings.gyro.enabled) {
altb 0:6661e1395e30 208 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
altb 0:6661e1395e30 209 }
altb 0:6661e1395e30 210 switch (settings.gyro.scale) {
altb 0:6661e1395e30 211 case 500:
altb 0:6661e1395e30 212 tempRegValue |= (0x1 << 3);
altb 0:6661e1395e30 213 break;
altb 0:6661e1395e30 214 case 2000:
altb 0:6661e1395e30 215 tempRegValue |= (0x3 << 3);
altb 0:6661e1395e30 216 break;
altb 0:6661e1395e30 217 // Otherwise we'll set it to 245 dps (0x0 << 4)
altb 0:6661e1395e30 218 }
altb 0:6661e1395e30 219 tempRegValue |= (settings.gyro.bandwidth & 0x3);
altb 0:6661e1395e30 220 xgWriteByte(CTRL_REG1_G, tempRegValue);
altb 0:6661e1395e30 221
altb 0:6661e1395e30 222 // CTRL_REG2_G (Default value: 0x00)
altb 0:6661e1395e30 223 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
altb 0:6661e1395e30 224 // INT_SEL[1:0] - INT selection configuration
altb 0:6661e1395e30 225 // OUT_SEL[1:0] - Out selection configuration
altb 0:6661e1395e30 226 xgWriteByte(CTRL_REG2_G, 0x00);
altb 0:6661e1395e30 227
altb 0:6661e1395e30 228 // CTRL_REG3_G (Default value: 0x00)
altb 0:6661e1395e30 229 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
altb 0:6661e1395e30 230 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
altb 0:6661e1395e30 231 // HP_EN - HPF enable (0:disabled, 1: enabled)
altb 0:6661e1395e30 232 // HPCF_G[3:0] - HPF cutoff frequency
altb 0:6661e1395e30 233 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
altb 0:6661e1395e30 234 if (settings.gyro.HPFEnable) {
altb 0:6661e1395e30 235 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
altb 0:6661e1395e30 236 }
altb 0:6661e1395e30 237 xgWriteByte(CTRL_REG3_G, tempRegValue);
altb 0:6661e1395e30 238
altb 0:6661e1395e30 239 // CTRL_REG4 (Default value: 0x38)
altb 0:6661e1395e30 240 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
altb 0:6661e1395e30 241 // Zen_G - Z-axis output enable (0:disable, 1:enable)
altb 0:6661e1395e30 242 // Yen_G - Y-axis output enable (0:disable, 1:enable)
altb 0:6661e1395e30 243 // Xen_G - X-axis output enable (0:disable, 1:enable)
altb 0:6661e1395e30 244 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
altb 0:6661e1395e30 245 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
altb 0:6661e1395e30 246 tempRegValue = 0;
altb 0:6661e1395e30 247 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
altb 0:6661e1395e30 248 if (settings.gyro.enableY) tempRegValue |= (1<<4);
altb 0:6661e1395e30 249 if (settings.gyro.enableX) tempRegValue |= (1<<3);
altb 0:6661e1395e30 250 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
altb 0:6661e1395e30 251 xgWriteByte(CTRL_REG4, tempRegValue);
altb 0:6661e1395e30 252
altb 0:6661e1395e30 253 // ORIENT_CFG_G (Default value: 0x00)
altb 0:6661e1395e30 254 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
altb 0:6661e1395e30 255 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
altb 0:6661e1395e30 256 // Orient [2:0] - Directional user orientation selection
altb 0:6661e1395e30 257 tempRegValue = 0;
altb 0:6661e1395e30 258 if (settings.gyro.flipX) tempRegValue |= (1<<5);
altb 0:6661e1395e30 259 if (settings.gyro.flipY) tempRegValue |= (1<<4);
altb 0:6661e1395e30 260 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
altb 0:6661e1395e30 261 xgWriteByte(ORIENT_CFG_G, tempRegValue);
altb 0:6661e1395e30 262 }
altb 0:6661e1395e30 263
altb 0:6661e1395e30 264 void LSM9DS1::initAccel()
altb 0:6661e1395e30 265 {
altb 0:6661e1395e30 266 uint8_t tempRegValue = 0;
altb 0:6661e1395e30 267
altb 0:6661e1395e30 268 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
altb 0:6661e1395e30 269 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
altb 0:6661e1395e30 270 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
altb 0:6661e1395e30 271 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
altb 0:6661e1395e30 272 // Zen_XL - Z-axis output enabled
altb 0:6661e1395e30 273 // Yen_XL - Y-axis output enabled
altb 0:6661e1395e30 274 // Xen_XL - X-axis output enabled
altb 0:6661e1395e30 275 if (settings.accel.enableZ) tempRegValue |= (1<<5);
altb 0:6661e1395e30 276 if (settings.accel.enableY) tempRegValue |= (1<<4);
altb 0:6661e1395e30 277 if (settings.accel.enableX) tempRegValue |= (1<<3);
altb 0:6661e1395e30 278
altb 0:6661e1395e30 279 xgWriteByte(CTRL_REG5_XL, tempRegValue);
altb 0:6661e1395e30 280
altb 0:6661e1395e30 281 // CTRL_REG6_XL (0x20) (Default value: 0x00)
altb 0:6661e1395e30 282 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
altb 0:6661e1395e30 283 // ODR_XL[2:0] - Output data rate & power mode selection
altb 0:6661e1395e30 284 // FS_XL[1:0] - Full-scale selection
altb 0:6661e1395e30 285 // BW_SCAL_ODR - Bandwidth selection
altb 0:6661e1395e30 286 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
altb 0:6661e1395e30 287 tempRegValue = 0;
altb 0:6661e1395e30 288 // To disable the accel, set the sampleRate bits to 0.
altb 0:6661e1395e30 289 if (settings.accel.enabled) {
altb 0:6661e1395e30 290 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
altb 0:6661e1395e30 291 }
altb 0:6661e1395e30 292 switch (settings.accel.scale) {
altb 0:6661e1395e30 293 case 4:
altb 0:6661e1395e30 294 tempRegValue |= (0x2 << 3);
altb 0:6661e1395e30 295 break;
altb 0:6661e1395e30 296 case 8:
altb 0:6661e1395e30 297 tempRegValue |= (0x3 << 3);
altb 0:6661e1395e30 298 break;
altb 0:6661e1395e30 299 case 16:
altb 0:6661e1395e30 300 tempRegValue |= (0x1 << 3);
altb 0:6661e1395e30 301 break;
altb 0:6661e1395e30 302 // Otherwise it'll be set to 2g (0x0 << 3)
altb 0:6661e1395e30 303 }
altb 0:6661e1395e30 304 if (settings.accel.bandwidth >= 0) {
altb 0:6661e1395e30 305 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
altb 0:6661e1395e30 306 tempRegValue |= (settings.accel.bandwidth & 0x03);
altb 0:6661e1395e30 307 }
altb 0:6661e1395e30 308 xgWriteByte(CTRL_REG6_XL, tempRegValue);
altb 0:6661e1395e30 309
altb 0:6661e1395e30 310 // CTRL_REG7_XL (0x21) (Default value: 0x00)
altb 0:6661e1395e30 311 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
altb 0:6661e1395e30 312 // HR - High resolution mode (0: disable, 1: enable)
altb 0:6661e1395e30 313 // DCF[1:0] - Digital filter cutoff frequency
altb 0:6661e1395e30 314 // FDS - Filtered data selection
altb 0:6661e1395e30 315 // HPIS1 - HPF enabled for interrupt function
altb 0:6661e1395e30 316 tempRegValue = 0;
altb 0:6661e1395e30 317 if (settings.accel.highResEnable) {
altb 0:6661e1395e30 318 tempRegValue |= (1<<7); // Set HR bit
altb 0:6661e1395e30 319 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
altb 0:6661e1395e30 320 }
altb 0:6661e1395e30 321 xgWriteByte(CTRL_REG7_XL, tempRegValue);
altb 0:6661e1395e30 322 }
altb 0:6661e1395e30 323
altb 0:6661e1395e30 324 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
altb 0:6661e1395e30 325 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
altb 0:6661e1395e30 326 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
altb 0:6661e1395e30 327 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
altb 0:6661e1395e30 328 // subtract the biases ourselves. This results in a more accurate measurement in general and can
altb 0:6661e1395e30 329 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
altb 0:6661e1395e30 330 // is good practice.
altb 0:6661e1395e30 331 void LSM9DS1::calibrate(bool autoCalc)
altb 0:6661e1395e30 332 {
altb 0:6661e1395e30 333 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
altb 0:6661e1395e30 334 uint8_t samples = 0;
altb 0:6661e1395e30 335 int ii;
altb 0:6661e1395e30 336 int32_t aBiasRawTemp[3] = {0, 0, 0};
altb 0:6661e1395e30 337 int32_t gBiasRawTemp[3] = {0, 0, 0};
altb 0:6661e1395e30 338
altb 0:6661e1395e30 339 // Turn on FIFO and set threshold to 32 samples
altb 0:6661e1395e30 340 enableFIFO(true);
altb 0:6661e1395e30 341 setFIFO(FIFO_THS, 0x1F);
altb 0:6661e1395e30 342 while (samples < 0x1F) {
altb 0:6661e1395e30 343 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
altb 0:6661e1395e30 344 }
altb 0:6661e1395e30 345 for(ii = 0; ii < samples ; ii++) {
altb 0:6661e1395e30 346 // Read the gyro data stored in the FIFO
altb 0:6661e1395e30 347 readGyro();
altb 0:6661e1395e30 348 gBiasRawTemp[0] += gx;
altb 0:6661e1395e30 349 gBiasRawTemp[1] += gy;
altb 0:6661e1395e30 350 gBiasRawTemp[2] += gz;
altb 0:6661e1395e30 351 readAccel();
altb 0:6661e1395e30 352 aBiasRawTemp[0] += ax;
altb 0:6661e1395e30 353 aBiasRawTemp[1] += ay;
altb 0:6661e1395e30 354 aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
altb 0:6661e1395e30 355 }
altb 0:6661e1395e30 356 for (ii = 0; ii < 3; ii++) {
altb 0:6661e1395e30 357 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
altb 0:6661e1395e30 358 gBias[ii] = calcGyro(gBiasRaw[ii]);
altb 0:6661e1395e30 359 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
altb 0:6661e1395e30 360 aBias[ii] = calcAccel(aBiasRaw[ii]);
altb 0:6661e1395e30 361 }
altb 0:6661e1395e30 362
altb 0:6661e1395e30 363 enableFIFO(false);
altb 0:6661e1395e30 364 setFIFO(FIFO_OFF, 0x00);
altb 0:6661e1395e30 365
altb 0:6661e1395e30 366 if (autoCalc) _autoCalc = true;
altb 0:6661e1395e30 367 }
altb 0:6661e1395e30 368
altb 0:6661e1395e30 369 void LSM9DS1::calibrateMag(bool loadIn)
altb 0:6661e1395e30 370 {
altb 0:6661e1395e30 371 int i, j;
altb 0:6661e1395e30 372 int16_t magMin[3] = {0, 0, 0};
altb 0:6661e1395e30 373 int16_t magMax[3] = {0, 0, 0}; // The road warrior
altb 0:6661e1395e30 374
altb 0:6661e1395e30 375 for (i=0; i<128; i++) {
altb 0:6661e1395e30 376 while (!magAvailable())
altb 0:6661e1395e30 377 ;
altb 0:6661e1395e30 378 readMag();
altb 0:6661e1395e30 379 int16_t magTemp[3] = {0, 0, 0};
altb 0:6661e1395e30 380 magTemp[0] = mx;
altb 0:6661e1395e30 381 magTemp[1] = my;
altb 0:6661e1395e30 382 magTemp[2] = mz;
altb 0:6661e1395e30 383 for (j = 0; j < 3; j++) {
altb 0:6661e1395e30 384 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
altb 0:6661e1395e30 385 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
altb 0:6661e1395e30 386 }
altb 0:6661e1395e30 387 }
altb 0:6661e1395e30 388 for (j = 0; j < 3; j++) {
altb 0:6661e1395e30 389 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
altb 0:6661e1395e30 390 mBias[j] = calcMag(mBiasRaw[j]);
altb 0:6661e1395e30 391 if (loadIn)
altb 0:6661e1395e30 392 magOffset(j, mBiasRaw[j]);
altb 0:6661e1395e30 393 }
altb 0:6661e1395e30 394
altb 0:6661e1395e30 395 }
altb 0:6661e1395e30 396 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
altb 0:6661e1395e30 397 {
altb 0:6661e1395e30 398 if (axis > 2)
altb 0:6661e1395e30 399 return;
altb 0:6661e1395e30 400 uint8_t msb, lsb;
altb 0:6661e1395e30 401 msb = (offset & 0xFF00) >> 8;
altb 0:6661e1395e30 402 lsb = offset & 0x00FF;
altb 0:6661e1395e30 403 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
altb 0:6661e1395e30 404 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
altb 0:6661e1395e30 405 }
altb 0:6661e1395e30 406
altb 0:6661e1395e30 407 void LSM9DS1::initMag()
altb 0:6661e1395e30 408 {
altb 0:6661e1395e30 409 uint8_t tempRegValue = 0;
altb 0:6661e1395e30 410
altb 0:6661e1395e30 411 // CTRL_REG1_M (Default value: 0x10)
altb 0:6661e1395e30 412 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
altb 0:6661e1395e30 413 // TEMP_COMP - Temperature compensation
altb 0:6661e1395e30 414 // OM[1:0] - X & Y axes op mode selection
altb 0:6661e1395e30 415 // 00:low-power, 01:medium performance
altb 0:6661e1395e30 416 // 10: high performance, 11:ultra-high performance
altb 0:6661e1395e30 417 // DO[2:0] - Output data rate selection
altb 0:6661e1395e30 418 // ST - Self-test enable
altb 0:6661e1395e30 419 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
altb 0:6661e1395e30 420 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
altb 0:6661e1395e30 421 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
altb 0:6661e1395e30 422 mWriteByte(CTRL_REG1_M, tempRegValue);
altb 0:6661e1395e30 423
altb 0:6661e1395e30 424 // CTRL_REG2_M (Default value 0x00)
altb 0:6661e1395e30 425 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
altb 0:6661e1395e30 426 // FS[1:0] - Full-scale configuration
altb 0:6661e1395e30 427 // REBOOT - Reboot memory content (0:normal, 1:reboot)
altb 0:6661e1395e30 428 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
altb 0:6661e1395e30 429 tempRegValue = 0;
altb 0:6661e1395e30 430 switch (settings.mag.scale) {
altb 0:6661e1395e30 431 case 8:
altb 0:6661e1395e30 432 tempRegValue |= (0x1 << 5);
altb 0:6661e1395e30 433 break;
altb 0:6661e1395e30 434 case 12:
altb 0:6661e1395e30 435 tempRegValue |= (0x2 << 5);
altb 0:6661e1395e30 436 break;
altb 0:6661e1395e30 437 case 16:
altb 0:6661e1395e30 438 tempRegValue |= (0x3 << 5);
altb 0:6661e1395e30 439 break;
altb 0:6661e1395e30 440 // Otherwise we'll default to 4 gauss (00)
altb 0:6661e1395e30 441 }
altb 0:6661e1395e30 442 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
altb 0:6661e1395e30 443
altb 0:6661e1395e30 444 // CTRL_REG3_M (Default value: 0x03)
altb 0:6661e1395e30 445 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
altb 0:6661e1395e30 446 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
altb 0:6661e1395e30 447 // LP - Low-power mode cofiguration (1:enable)
altb 0:6661e1395e30 448 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
altb 0:6661e1395e30 449 // MD[1:0] - Operating mode
altb 0:6661e1395e30 450 // 00:continuous conversion, 01:single-conversion,
altb 0:6661e1395e30 451 // 10,11: Power-down
altb 0:6661e1395e30 452 tempRegValue = 0;
altb 0:6661e1395e30 453 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
altb 0:6661e1395e30 454 tempRegValue |= (settings.mag.operatingMode & 0x3);
altb 0:6661e1395e30 455 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
altb 0:6661e1395e30 456
altb 0:6661e1395e30 457 // CTRL_REG4_M (Default value: 0x00)
altb 0:6661e1395e30 458 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
altb 0:6661e1395e30 459 // OMZ[1:0] - Z-axis operative mode selection
altb 0:6661e1395e30 460 // 00:low-power mode, 01:medium performance
altb 0:6661e1395e30 461 // 10:high performance, 10:ultra-high performance
altb 0:6661e1395e30 462 // BLE - Big/little endian data
altb 0:6661e1395e30 463 tempRegValue = 0;
altb 0:6661e1395e30 464 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
altb 0:6661e1395e30 465 mWriteByte(CTRL_REG4_M, tempRegValue);
altb 0:6661e1395e30 466
altb 0:6661e1395e30 467 // CTRL_REG5_M (Default value: 0x00)
altb 0:6661e1395e30 468 // [0][BDU][0][0][0][0][0][0]
altb 0:6661e1395e30 469 // BDU - Block data update for magnetic data
altb 0:6661e1395e30 470 // 0:continuous, 1:not updated until MSB/LSB are read
altb 0:6661e1395e30 471 tempRegValue = 0;
altb 0:6661e1395e30 472 mWriteByte(CTRL_REG5_M, tempRegValue);
altb 0:6661e1395e30 473 }
altb 0:6661e1395e30 474
altb 0:6661e1395e30 475 uint8_t LSM9DS1::accelAvailable()
altb 0:6661e1395e30 476 {
altb 0:6661e1395e30 477 uint8_t status = xgReadByte(STATUS_REG_1);
altb 0:6661e1395e30 478
altb 0:6661e1395e30 479 return (status & (1<<0));
altb 0:6661e1395e30 480 }
altb 0:6661e1395e30 481
altb 0:6661e1395e30 482 uint8_t LSM9DS1::gyroAvailable()
altb 0:6661e1395e30 483 {
altb 0:6661e1395e30 484 uint8_t status = xgReadByte(STATUS_REG_1);
altb 0:6661e1395e30 485
altb 0:6661e1395e30 486 return ((status & (1<<1)) >> 1);
altb 0:6661e1395e30 487 }
altb 0:6661e1395e30 488
altb 0:6661e1395e30 489 uint8_t LSM9DS1::tempAvailable()
altb 0:6661e1395e30 490 {
altb 0:6661e1395e30 491 uint8_t status = xgReadByte(STATUS_REG_1);
altb 0:6661e1395e30 492
altb 0:6661e1395e30 493 return ((status & (1<<2)) >> 2);
altb 0:6661e1395e30 494 }
altb 0:6661e1395e30 495
altb 0:6661e1395e30 496 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
altb 0:6661e1395e30 497 {
altb 0:6661e1395e30 498 uint8_t status;
altb 0:6661e1395e30 499 status = mReadByte(STATUS_REG_M);
altb 0:6661e1395e30 500
altb 0:6661e1395e30 501 return ((status & (1<<axis)) >> axis);
altb 0:6661e1395e30 502 }
altb 0:6661e1395e30 503
altb 0:6661e1395e30 504 void LSM9DS1::readAccel()
altb 0:6661e1395e30 505 {
altb 0:6661e1395e30 506 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
altb 0:6661e1395e30 507 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
altb 0:6661e1395e30 508 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
altb 0:6661e1395e30 509 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
altb 0:6661e1395e30 510 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
altb 0:6661e1395e30 511 if (_autoCalc) {
altb 0:6661e1395e30 512 ax -= aBiasRaw[X_AXIS];
altb 0:6661e1395e30 513 ay -= aBiasRaw[Y_AXIS];
altb 0:6661e1395e30 514 az -= aBiasRaw[Z_AXIS];
altb 0:6661e1395e30 515 }
altb 0:6661e1395e30 516 }
altb 0:6661e1395e30 517
altb 0:6661e1395e30 518 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
altb 0:6661e1395e30 519 {
altb 0:6661e1395e30 520 uint8_t temp[2];
altb 0:6661e1395e30 521 int16_t value;
altb 0:6661e1395e30 522 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
altb 0:6661e1395e30 523 value = (temp[1] << 8) | temp[0];
altb 0:6661e1395e30 524
altb 0:6661e1395e30 525 if (_autoCalc)
altb 0:6661e1395e30 526 value -= aBiasRaw[axis];
altb 0:6661e1395e30 527
altb 0:6661e1395e30 528 return value;
altb 0:6661e1395e30 529 }
altb 0:6661e1395e30 530
altb 0:6661e1395e30 531 void LSM9DS1::readMag()
altb 0:6661e1395e30 532 {
altb 0:6661e1395e30 533 uint8_t temp[6]; // We'll read six bytes from the mag into temp
altb 0:6661e1395e30 534 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
altb 0:6661e1395e30 535 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
altb 0:6661e1395e30 536 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
altb 0:6661e1395e30 537 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
altb 0:6661e1395e30 538 }
altb 0:6661e1395e30 539 void LSM9DS1::readMag_calibrated()
altb 0:6661e1395e30 540 {
altb 0:6661e1395e30 541 uint8_t temp[6]; // We'll read six bytes from the mag into temp
altb 0:6661e1395e30 542 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
altb 0:6661e1395e30 543 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
altb 0:6661e1395e30 544 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
altb 0:6661e1395e30 545 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
altb 0:6661e1395e30 546 mx -=magn_ellipsoid_center[0];
altb 0:6661e1395e30 547 my -=magn_ellipsoid_center[1];
altb 0:6661e1395e30 548 mz -=magn_ellipsoid_center[2];
altb 0:6661e1395e30 549 float dum[3];
altb 0:6661e1395e30 550 for(int i=0;i<3;i++)
altb 0:6661e1395e30 551 dum[i] = RM[i][0] * (float)mx + RM[i][1] * (float)my + RM[i][2] * (float)mz;
altb 0:6661e1395e30 552 mx=(int16_t)dum[0];
altb 0:6661e1395e30 553 my=(int16_t)dum[1];
altb 0:6661e1395e30 554 mz=(int16_t)dum[2];
altb 0:6661e1395e30 555
altb 0:6661e1395e30 556 }
altb 0:6661e1395e30 557
altb 0:6661e1395e30 558 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
altb 0:6661e1395e30 559 {
altb 0:6661e1395e30 560 uint8_t temp[2];
altb 0:6661e1395e30 561 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
altb 0:6661e1395e30 562 return (temp[1] << 8) | temp[0];
altb 0:6661e1395e30 563 }
altb 0:6661e1395e30 564
altb 0:6661e1395e30 565 void LSM9DS1::readTemp()
altb 0:6661e1395e30 566 {
altb 0:6661e1395e30 567 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
altb 0:6661e1395e30 568 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
altb 0:6661e1395e30 569 temperature = ((int16_t)temp[1] << 8) | temp[0];
altb 0:6661e1395e30 570 }
altb 0:6661e1395e30 571
altb 0:6661e1395e30 572 void LSM9DS1::readGyro()
altb 0:6661e1395e30 573 {
altb 0:6661e1395e30 574 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
altb 0:6661e1395e30 575 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
altb 0:6661e1395e30 576 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
altb 0:6661e1395e30 577 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
altb 0:6661e1395e30 578 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
altb 0:6661e1395e30 579 if (_autoCalc) {
altb 0:6661e1395e30 580 gx -= gBiasRaw[X_AXIS];
altb 0:6661e1395e30 581 gy -= gBiasRaw[Y_AXIS];
altb 0:6661e1395e30 582 gz -= gBiasRaw[Z_AXIS];
altb 0:6661e1395e30 583 }
altb 0:6661e1395e30 584 }
altb 0:6661e1395e30 585
altb 0:6661e1395e30 586 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
altb 0:6661e1395e30 587 {
altb 0:6661e1395e30 588 uint8_t temp[2];
altb 0:6661e1395e30 589 int16_t value;
altb 0:6661e1395e30 590
altb 0:6661e1395e30 591 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
altb 0:6661e1395e30 592
altb 0:6661e1395e30 593 value = (temp[1] << 8) | temp[0];
altb 0:6661e1395e30 594
altb 0:6661e1395e30 595 if (_autoCalc)
altb 0:6661e1395e30 596 value -= gBiasRaw[axis];
altb 0:6661e1395e30 597
altb 0:6661e1395e30 598 return value;
altb 0:6661e1395e30 599 }
altb 0:6661e1395e30 600
altb 0:6661e1395e30 601 float LSM9DS1::calcGyro(int16_t gyro)
altb 0:6661e1395e30 602 {
altb 0:6661e1395e30 603 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
altb 0:6661e1395e30 604 return gRes * gyro;
altb 0:6661e1395e30 605 }
altb 0:6661e1395e30 606
altb 0:6661e1395e30 607 float LSM9DS1::calcAccel(int16_t accel)
altb 0:6661e1395e30 608 {
altb 0:6661e1395e30 609 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
altb 0:6661e1395e30 610 return aRes * accel;
altb 0:6661e1395e30 611 }
altb 0:6661e1395e30 612
altb 0:6661e1395e30 613 float LSM9DS1::calcMag(int16_t mag)
altb 0:6661e1395e30 614 {
altb 0:6661e1395e30 615 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
altb 0:6661e1395e30 616 return mRes * mag;
altb 0:6661e1395e30 617 }
altb 0:6661e1395e30 618
altb 0:6661e1395e30 619 void LSM9DS1::setGyroScale(uint16_t gScl)
altb 0:6661e1395e30 620 {
altb 0:6661e1395e30 621 // Read current value of CTRL_REG1_G:
altb 0:6661e1395e30 622 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
altb 0:6661e1395e30 623 // Mask out scale bits (3 & 4):
altb 0:6661e1395e30 624 ctrl1RegValue &= 0xE7;
altb 0:6661e1395e30 625 switch (gScl) {
altb 0:6661e1395e30 626 case 500:
altb 0:6661e1395e30 627 ctrl1RegValue |= (0x1 << 3);
altb 0:6661e1395e30 628 settings.gyro.scale = 500;
altb 0:6661e1395e30 629 break;
altb 0:6661e1395e30 630 case 2000:
altb 0:6661e1395e30 631 ctrl1RegValue |= (0x3 << 3);
altb 0:6661e1395e30 632 settings.gyro.scale = 2000;
altb 0:6661e1395e30 633 break;
altb 0:6661e1395e30 634 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
altb 0:6661e1395e30 635 settings.gyro.scale = 245;
altb 0:6661e1395e30 636 break;
altb 0:6661e1395e30 637 }
altb 0:6661e1395e30 638 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
altb 0:6661e1395e30 639
altb 0:6661e1395e30 640 calcgRes();
altb 0:6661e1395e30 641 }
altb 0:6661e1395e30 642
altb 0:6661e1395e30 643 void LSM9DS1::setAccelScale(uint8_t aScl)
altb 0:6661e1395e30 644 {
altb 0:6661e1395e30 645 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
altb 0:6661e1395e30 646 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
altb 0:6661e1395e30 647 // Mask out accel scale bits:
altb 0:6661e1395e30 648 tempRegValue &= 0xE7;
altb 0:6661e1395e30 649
altb 0:6661e1395e30 650 switch (aScl) {
altb 0:6661e1395e30 651 case 4:
altb 0:6661e1395e30 652 tempRegValue |= (0x2 << 3);
altb 0:6661e1395e30 653 settings.accel.scale = 4;
altb 0:6661e1395e30 654 break;
altb 0:6661e1395e30 655 case 8:
altb 0:6661e1395e30 656 tempRegValue |= (0x3 << 3);
altb 0:6661e1395e30 657 settings.accel.scale = 8;
altb 0:6661e1395e30 658 break;
altb 0:6661e1395e30 659 case 16:
altb 0:6661e1395e30 660 tempRegValue |= (0x1 << 3);
altb 0:6661e1395e30 661 settings.accel.scale = 16;
altb 0:6661e1395e30 662 break;
altb 0:6661e1395e30 663 default: // Otherwise it'll be set to 2g (0x0 << 3)
altb 0:6661e1395e30 664 settings.accel.scale = 2;
altb 0:6661e1395e30 665 break;
altb 0:6661e1395e30 666 }
altb 0:6661e1395e30 667 xgWriteByte(CTRL_REG6_XL, tempRegValue);
altb 0:6661e1395e30 668
altb 0:6661e1395e30 669 // Then calculate a new aRes, which relies on aScale being set correctly:
altb 0:6661e1395e30 670 calcaRes();
altb 0:6661e1395e30 671 }
altb 0:6661e1395e30 672
altb 0:6661e1395e30 673 void LSM9DS1::setMagScale(uint8_t mScl)
altb 0:6661e1395e30 674 {
altb 0:6661e1395e30 675 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
altb 0:6661e1395e30 676 uint8_t temp = mReadByte(CTRL_REG2_M);
altb 0:6661e1395e30 677 // Then mask out the mag scale bits:
altb 0:6661e1395e30 678 temp &= 0xFF^(0x3 << 5);
altb 0:6661e1395e30 679
altb 0:6661e1395e30 680 switch (mScl) {
altb 0:6661e1395e30 681 case 8:
altb 0:6661e1395e30 682 temp |= (0x1 << 5);
altb 0:6661e1395e30 683 settings.mag.scale = 8;
altb 0:6661e1395e30 684 break;
altb 0:6661e1395e30 685 case 12:
altb 0:6661e1395e30 686 temp |= (0x2 << 5);
altb 0:6661e1395e30 687 settings.mag.scale = 12;
altb 0:6661e1395e30 688 break;
altb 0:6661e1395e30 689 case 16:
altb 0:6661e1395e30 690 temp |= (0x3 << 5);
altb 0:6661e1395e30 691 settings.mag.scale = 16;
altb 0:6661e1395e30 692 break;
altb 0:6661e1395e30 693 default: // Otherwise we'll default to 4 gauss (00)
altb 0:6661e1395e30 694 settings.mag.scale = 4;
altb 0:6661e1395e30 695 break;
altb 0:6661e1395e30 696 }
altb 0:6661e1395e30 697
altb 0:6661e1395e30 698 // And write the new register value back into CTRL_REG6_XM:
altb 0:6661e1395e30 699 mWriteByte(CTRL_REG2_M, temp);
altb 0:6661e1395e30 700
altb 0:6661e1395e30 701 // We've updated the sensor, but we also need to update our class variables
altb 0:6661e1395e30 702 // First update mScale:
altb 0:6661e1395e30 703 //mScale = mScl;
altb 0:6661e1395e30 704 // Then calculate a new mRes, which relies on mScale being set correctly:
altb 0:6661e1395e30 705 calcmRes();
altb 0:6661e1395e30 706 }
altb 0:6661e1395e30 707
altb 0:6661e1395e30 708 void LSM9DS1::setGyroODR(uint8_t gRate)
altb 0:6661e1395e30 709 {
altb 0:6661e1395e30 710 // Only do this if gRate is not 0 (which would disable the gyro)
altb 0:6661e1395e30 711 if ((gRate & 0x07) != 0) {
altb 0:6661e1395e30 712 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
altb 0:6661e1395e30 713 uint8_t temp = xgReadByte(CTRL_REG1_G);
altb 0:6661e1395e30 714 // Then mask out the gyro ODR bits:
altb 0:6661e1395e30 715 temp &= 0xFF^(0x7 << 5);
altb 0:6661e1395e30 716 temp |= (gRate & 0x07) << 5;
altb 0:6661e1395e30 717 // Update our settings struct
altb 0:6661e1395e30 718 settings.gyro.sampleRate = gRate & 0x07;
altb 0:6661e1395e30 719 // And write the new register value back into CTRL_REG1_G:
altb 0:6661e1395e30 720 xgWriteByte(CTRL_REG1_G, temp);
altb 0:6661e1395e30 721 }
altb 0:6661e1395e30 722 }
altb 0:6661e1395e30 723
altb 0:6661e1395e30 724 void LSM9DS1::setAccelODR(uint8_t aRate)
altb 0:6661e1395e30 725 {
altb 0:6661e1395e30 726 // Only do this if aRate is not 0 (which would disable the accel)
altb 0:6661e1395e30 727 if ((aRate & 0x07) != 0) {
altb 0:6661e1395e30 728 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
altb 0:6661e1395e30 729 uint8_t temp = xgReadByte(CTRL_REG6_XL);
altb 0:6661e1395e30 730 // Then mask out the accel ODR bits:
altb 0:6661e1395e30 731 temp &= 0x1F;
altb 0:6661e1395e30 732 // Then shift in our new ODR bits:
altb 0:6661e1395e30 733 temp |= ((aRate & 0x07) << 5);
altb 0:6661e1395e30 734 settings.accel.sampleRate = aRate & 0x07;
altb 0:6661e1395e30 735 // And write the new register value back into CTRL_REG1_XM:
altb 0:6661e1395e30 736 xgWriteByte(CTRL_REG6_XL, temp);
altb 0:6661e1395e30 737 }
altb 0:6661e1395e30 738 }
altb 0:6661e1395e30 739
altb 0:6661e1395e30 740 void LSM9DS1::setMagODR(uint8_t mRate)
altb 0:6661e1395e30 741 {
altb 0:6661e1395e30 742 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
altb 0:6661e1395e30 743 uint8_t temp = mReadByte(CTRL_REG1_M);
altb 0:6661e1395e30 744 // Then mask out the mag ODR bits:
altb 0:6661e1395e30 745 temp &= 0xFF^(0x7 << 2);
altb 0:6661e1395e30 746 // Then shift in our new ODR bits:
altb 0:6661e1395e30 747 temp |= ((mRate & 0x07) << 2);
altb 0:6661e1395e30 748 settings.mag.sampleRate = mRate & 0x07;
altb 0:6661e1395e30 749 // And write the new register value back into CTRL_REG5_XM:
altb 0:6661e1395e30 750 mWriteByte(CTRL_REG1_M, temp);
altb 0:6661e1395e30 751 }
altb 0:6661e1395e30 752
altb 0:6661e1395e30 753 void LSM9DS1::calcgRes()
altb 0:6661e1395e30 754 {
altb 0:6661e1395e30 755 gRes = ((float) settings.gyro.scale) / 32768.0;
altb 0:6661e1395e30 756 }
altb 0:6661e1395e30 757
altb 0:6661e1395e30 758 void LSM9DS1::calcaRes()
altb 0:6661e1395e30 759 {
altb 0:6661e1395e30 760 aRes = ((float) settings.accel.scale) / 32768.0;
altb 0:6661e1395e30 761 }
altb 0:6661e1395e30 762
altb 0:6661e1395e30 763 void LSM9DS1::calcmRes()
altb 0:6661e1395e30 764 {
altb 0:6661e1395e30 765 //mRes = ((float) settings.mag.scale) / 32768.0;
altb 0:6661e1395e30 766 switch (settings.mag.scale) {
altb 0:6661e1395e30 767 case 4:
altb 0:6661e1395e30 768 mRes = magSensitivity[0];
altb 0:6661e1395e30 769 break;
altb 0:6661e1395e30 770 case 8:
altb 0:6661e1395e30 771 mRes = magSensitivity[1];
altb 0:6661e1395e30 772 break;
altb 0:6661e1395e30 773 case 12:
altb 0:6661e1395e30 774 mRes = magSensitivity[2];
altb 0:6661e1395e30 775 break;
altb 0:6661e1395e30 776 case 16:
altb 0:6661e1395e30 777 mRes = magSensitivity[3];
altb 0:6661e1395e30 778 break;
altb 0:6661e1395e30 779 }
altb 0:6661e1395e30 780
altb 0:6661e1395e30 781 }
altb 0:6661e1395e30 782 /*
altb 0:6661e1395e30 783 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
altb 0:6661e1395e30 784 h_lactive activeLow, pp_od pushPull)
altb 0:6661e1395e30 785 {
altb 0:6661e1395e30 786 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
altb 0:6661e1395e30 787 // those two values.
altb 0:6661e1395e30 788 // [generator] should be an OR'd list of values from the interrupt_generators enum
altb 0:6661e1395e30 789 xgWriteByte(interrupt, generator);
altb 0:6661e1395e30 790
altb 0:6661e1395e30 791 // Configure CTRL_REG8
altb 0:6661e1395e30 792 uint8_t temp;
altb 0:6661e1395e30 793 temp = xgReadByte(CTRL_REG8);
altb 0:6661e1395e30 794
altb 0:6661e1395e30 795 if (activeLow) temp |= (1<<5);
altb 0:6661e1395e30 796 else temp &= ~(1<<5);
altb 0:6661e1395e30 797
altb 0:6661e1395e30 798 if (pushPull) temp &= ~(1<<4);
altb 0:6661e1395e30 799 else temp |= (1<<4);
altb 0:6661e1395e30 800
altb 0:6661e1395e30 801 xgWriteByte(CTRL_REG8, temp);
altb 0:6661e1395e30 802 }*/
altb 0:6661e1395e30 803
altb 0:6661e1395e30 804 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
altb 0:6661e1395e30 805 {
altb 0:6661e1395e30 806 uint8_t temp = 0;
altb 0:6661e1395e30 807
altb 0:6661e1395e30 808 temp = threshold & 0x7F;
altb 0:6661e1395e30 809 if (sleepOn) temp |= (1<<7);
altb 0:6661e1395e30 810 xgWriteByte(ACT_THS, temp);
altb 0:6661e1395e30 811
altb 0:6661e1395e30 812 xgWriteByte(ACT_DUR, duration);
altb 0:6661e1395e30 813 }
altb 0:6661e1395e30 814
altb 0:6661e1395e30 815 /*
altb 0:6661e1395e30 816 uint8_t LSM9DS1::getInactivity()
altb 0:6661e1395e30 817 {
altb 0:6661e1395e30 818 uint8_t temp = xgReadByte(STATUS_REG_0);
altb 0:6661e1395e30 819 temp &= (0x10);
altb 0:6661e1395e30 820 return temp;
altb 0:6661e1395e30 821 }
altb 0:6661e1395e30 822
altb 0:6661e1395e30 823 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
altb 0:6661e1395e30 824 {
altb 0:6661e1395e30 825 // Use variables from accel_interrupt_generator, OR'd together to create
altb 0:6661e1395e30 826 // the [generator]value.
altb 0:6661e1395e30 827 uint8_t temp = generator;
altb 0:6661e1395e30 828 if (andInterrupts) temp |= 0x80;
altb 0:6661e1395e30 829 xgWriteByte(INT_GEN_CFG_XL, temp);
altb 0:6661e1395e30 830 }
altb 0:6661e1395e30 831
altb 0:6661e1395e30 832 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
altb 0:6661e1395e30 833 {
altb 0:6661e1395e30 834 // Write threshold value to INT_GEN_THS_?_XL.
altb 0:6661e1395e30 835 // axis will be 0, 1, or 2 (x, y, z respectively)
altb 0:6661e1395e30 836 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
altb 0:6661e1395e30 837
altb 0:6661e1395e30 838 // Write duration and wait to INT_GEN_DUR_XL
altb 0:6661e1395e30 839 uint8_t temp;
altb 0:6661e1395e30 840 temp = (duration & 0x7F);
altb 0:6661e1395e30 841 if (wait) temp |= 0x80;
altb 0:6661e1395e30 842 xgWriteByte(INT_GEN_DUR_XL, temp);
altb 0:6661e1395e30 843 }
altb 0:6661e1395e30 844
altb 0:6661e1395e30 845 uint8_t LSM9DS1::getAccelIntSrc()
altb 0:6661e1395e30 846 {
altb 0:6661e1395e30 847 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
altb 0:6661e1395e30 848
altb 0:6661e1395e30 849 // Check if the IA_XL (interrupt active) bit is set
altb 0:6661e1395e30 850 if (intSrc & (1<<6)) {
altb 0:6661e1395e30 851 return (intSrc & 0x3F);
altb 0:6661e1395e30 852 }
altb 0:6661e1395e30 853
altb 0:6661e1395e30 854 return 0;
altb 0:6661e1395e30 855 }
altb 0:6661e1395e30 856
altb 0:6661e1395e30 857 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
altb 0:6661e1395e30 858 {
altb 0:6661e1395e30 859 // Use variables from accel_interrupt_generator, OR'd together to create
altb 0:6661e1395e30 860 // the [generator]value.
altb 0:6661e1395e30 861 uint8_t temp = generator;
altb 0:6661e1395e30 862 if (aoi) temp |= 0x80;
altb 0:6661e1395e30 863 if (latch) temp |= 0x40;
altb 0:6661e1395e30 864 xgWriteByte(INT_GEN_CFG_G, temp);
altb 0:6661e1395e30 865 }
altb 0:6661e1395e30 866
altb 0:6661e1395e30 867 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
altb 0:6661e1395e30 868 {
altb 0:6661e1395e30 869 uint8_t buffer[2];
altb 0:6661e1395e30 870 buffer[0] = (threshold & 0x7F00) >> 8;
altb 0:6661e1395e30 871 buffer[1] = (threshold & 0x00FF);
altb 0:6661e1395e30 872 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
altb 0:6661e1395e30 873 // axis will be 0, 1, or 2 (x, y, z respectively)
altb 0:6661e1395e30 874 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
altb 0:6661e1395e30 875 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
altb 0:6661e1395e30 876
altb 0:6661e1395e30 877 // Write duration and wait to INT_GEN_DUR_XL
altb 0:6661e1395e30 878 uint8_t temp;
altb 0:6661e1395e30 879 temp = (duration & 0x7F);
altb 0:6661e1395e30 880 if (wait) temp |= 0x80;
altb 0:6661e1395e30 881 xgWriteByte(INT_GEN_DUR_G, temp);
altb 0:6661e1395e30 882 }
altb 0:6661e1395e30 883
altb 0:6661e1395e30 884 uint8_t LSM9DS1::getGyroIntSrc()
altb 0:6661e1395e30 885 {
altb 0:6661e1395e30 886 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
altb 0:6661e1395e30 887
altb 0:6661e1395e30 888 // Check if the IA_G (interrupt active) bit is set
altb 0:6661e1395e30 889 if (intSrc & (1<<6)) {
altb 0:6661e1395e30 890 return (intSrc & 0x3F);
altb 0:6661e1395e30 891 }
altb 0:6661e1395e30 892
altb 0:6661e1395e30 893 return 0;
altb 0:6661e1395e30 894 }
altb 0:6661e1395e30 895
altb 0:6661e1395e30 896
altb 0:6661e1395e30 897 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
altb 0:6661e1395e30 898 {
altb 0:6661e1395e30 899 // Mask out non-generator bits (0-4)
altb 0:6661e1395e30 900 uint8_t config = (generator & 0xE0);
altb 0:6661e1395e30 901 // IEA bit is 0 for active-low, 1 for active-high.
altb 0:6661e1395e30 902 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
altb 0:6661e1395e30 903 // IEL bit is 0 for latched, 1 for not-latched
altb 0:6661e1395e30 904 if (!latch) config |= (1<<1);
altb 0:6661e1395e30 905 // As long as we have at least 1 generator, enable the interrupt
altb 0:6661e1395e30 906 if (generator != 0) config |= (1<<0);
altb 0:6661e1395e30 907
altb 0:6661e1395e30 908 mWriteByte(INT_CFG_M, config);
altb 0:6661e1395e30 909 }
altb 0:6661e1395e30 910
altb 0:6661e1395e30 911
altb 0:6661e1395e30 912 uint8_t LSM9DS1::getMagIntSrc()
altb 0:6661e1395e30 913 {
altb 0:6661e1395e30 914 uint8_t intSrc = mReadByte(INT_SRC_M);
altb 0:6661e1395e30 915
altb 0:6661e1395e30 916 // Check if the INT (interrupt active) bit is set
altb 0:6661e1395e30 917 if (intSrc & (1<<0)) {
altb 0:6661e1395e30 918 return (intSrc & 0xFE);
altb 0:6661e1395e30 919 }
altb 0:6661e1395e30 920
altb 0:6661e1395e30 921 return 0;
altb 0:6661e1395e30 922 }*/
altb 0:6661e1395e30 923
altb 0:6661e1395e30 924 void LSM9DS1::configMagThs(uint16_t threshold)
altb 0:6661e1395e30 925 {
altb 0:6661e1395e30 926 // Write high eight bits of [threshold] to INT_THS_H_M
altb 0:6661e1395e30 927 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
altb 0:6661e1395e30 928 // Write low eight bits of [threshold] to INT_THS_L_M
altb 0:6661e1395e30 929 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
altb 0:6661e1395e30 930 }
altb 0:6661e1395e30 931
altb 0:6661e1395e30 932 void LSM9DS1::sleepGyro(bool enable)
altb 0:6661e1395e30 933 {
altb 0:6661e1395e30 934 uint8_t temp = xgReadByte(CTRL_REG9);
altb 0:6661e1395e30 935 if (enable) temp |= (1<<6);
altb 0:6661e1395e30 936 else temp &= ~(1<<6);
altb 0:6661e1395e30 937 xgWriteByte(CTRL_REG9, temp);
altb 0:6661e1395e30 938 }
altb 0:6661e1395e30 939
altb 0:6661e1395e30 940 void LSM9DS1::enableFIFO(bool enable)
altb 0:6661e1395e30 941 {
altb 0:6661e1395e30 942 uint8_t temp = xgReadByte(CTRL_REG9);
altb 0:6661e1395e30 943 if (enable) temp |= (1<<1);
altb 0:6661e1395e30 944 else temp &= ~(1<<1);
altb 0:6661e1395e30 945 xgWriteByte(CTRL_REG9, temp);
altb 0:6661e1395e30 946 }
altb 0:6661e1395e30 947
altb 0:6661e1395e30 948 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
altb 0:6661e1395e30 949 {
altb 0:6661e1395e30 950 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
altb 0:6661e1395e30 951 // limit it to the maximum.
altb 0:6661e1395e30 952 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
altb 0:6661e1395e30 953 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
altb 0:6661e1395e30 954 }
altb 0:6661e1395e30 955
altb 0:6661e1395e30 956 uint8_t LSM9DS1::getFIFOSamples()
altb 0:6661e1395e30 957 {
altb 0:6661e1395e30 958 return (xgReadByte(FIFO_SRC) & 0x3F);
altb 0:6661e1395e30 959 }
altb 0:6661e1395e30 960
altb 0:6661e1395e30 961 void LSM9DS1::constrainScales()
altb 0:6661e1395e30 962 {
altb 0:6661e1395e30 963 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
altb 0:6661e1395e30 964 (settings.gyro.scale != 2000)) {
altb 0:6661e1395e30 965 settings.gyro.scale = 245;
altb 0:6661e1395e30 966 }
altb 0:6661e1395e30 967
altb 0:6661e1395e30 968 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
altb 0:6661e1395e30 969 (settings.accel.scale != 8) && (settings.accel.scale != 16)) {
altb 0:6661e1395e30 970 settings.accel.scale = 2;
altb 0:6661e1395e30 971 }
altb 0:6661e1395e30 972
altb 0:6661e1395e30 973 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
altb 0:6661e1395e30 974 (settings.mag.scale != 12) && (settings.mag.scale != 16)) {
altb 0:6661e1395e30 975 settings.mag.scale = 4;
altb 0:6661e1395e30 976 }
altb 0:6661e1395e30 977 }
altb 0:6661e1395e30 978
altb 0:6661e1395e30 979 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
altb 0:6661e1395e30 980 {
altb 0:6661e1395e30 981 // Whether we're using I2C or SPI, write a byte using the
altb 0:6661e1395e30 982 // gyro-specific I2C address or SPI CS pin.
altb 0:6661e1395e30 983 if (settings.device.commInterface == IMU_MODE_I2C) {
altb 0:6661e1395e30 984 printf("yo");
altb 0:6661e1395e30 985 // I2CwriteByte(_xgAddress, subAddress, data);
altb 0:6661e1395e30 986 } else if (settings.device.commInterface == IMU_MODE_SPI) {
altb 0:6661e1395e30 987 SPIwriteByte(_xgAddress, subAddress, data);
altb 0:6661e1395e30 988 }
altb 0:6661e1395e30 989 }
altb 0:6661e1395e30 990
altb 0:6661e1395e30 991
altb 0:6661e1395e30 992
altb 0:6661e1395e30 993 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
altb 0:6661e1395e30 994 {
altb 0:6661e1395e30 995 // Whether we're using I2C or SPI, write a byte using the
altb 0:6661e1395e30 996 // accelerometer-specific I2C address or SPI CS pin.
altb 0:6661e1395e30 997 // if (settings.device.commInterface == IMU_MODE_I2C)
altb 0:6661e1395e30 998 // return I2CwriteByte(_mAddress, subAddress, data);
altb 0:6661e1395e30 999 if (settings.device.commInterface == IMU_MODE_SPI)
altb 0:6661e1395e30 1000 return SPIwriteByte(_mAddress, subAddress, data);
altb 0:6661e1395e30 1001 }
altb 0:6661e1395e30 1002
altb 0:6661e1395e30 1003 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
altb 0:6661e1395e30 1004 {
altb 0:6661e1395e30 1005 // Whether we're using I2C or SPI, read a byte using the
altb 0:6661e1395e30 1006 // gyro-specific I2C address or SPI CS pin.
altb 0:6661e1395e30 1007 //if (settings.device.commInterface == IMU_MODE_I2C)
altb 0:6661e1395e30 1008 // return I2CreadByte(_xgAddress, subAddress);
altb 0:6661e1395e30 1009 if (settings.device.commInterface == IMU_MODE_SPI)
altb 0:6661e1395e30 1010 return SPIreadByte(_xgAddress, subAddress);
altb 0:6661e1395e30 1011 }
altb 0:6661e1395e30 1012
altb 0:6661e1395e30 1013 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
altb 0:6661e1395e30 1014 {
altb 0:6661e1395e30 1015 // Whether we're using I2C or SPI, read multiple bytes using the
altb 0:6661e1395e30 1016 // gyro-specific I2C address or SPI CS pin.
altb 0:6661e1395e30 1017 if (settings.device.commInterface == IMU_MODE_I2C) {
altb 0:6661e1395e30 1018 // I2CreadBytes(_xgAddress, subAddress, dest, count);
altb 0:6661e1395e30 1019 } else if (settings.device.commInterface == IMU_MODE_SPI) {
altb 0:6661e1395e30 1020 SPIreadBytes(_xgAddress, subAddress, dest, count);
altb 0:6661e1395e30 1021 }
altb 0:6661e1395e30 1022 }
altb 0:6661e1395e30 1023
altb 0:6661e1395e30 1024 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
altb 0:6661e1395e30 1025 {
altb 0:6661e1395e30 1026 // Whether we're using I2C or SPI, read a byte using the
altb 0:6661e1395e30 1027 // accelerometer-specific I2C address or SPI CS pin.
altb 0:6661e1395e30 1028 //if (settings.device.commInterface == IMU_MODE_I2C)
altb 0:6661e1395e30 1029 // return I2CreadByte(_mAddress, subAddress);
altb 0:6661e1395e30 1030 if (settings.device.commInterface == IMU_MODE_SPI)
altb 0:6661e1395e30 1031 return SPIreadByte(_mAddress, subAddress);
altb 0:6661e1395e30 1032 }
altb 0:6661e1395e30 1033
altb 0:6661e1395e30 1034 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
altb 0:6661e1395e30 1035 {
altb 0:6661e1395e30 1036 // Whether we're using I2C or SPI, read multiple bytes using the
altb 0:6661e1395e30 1037 // accelerometer-specific I2C address or SPI CS pin.
altb 0:6661e1395e30 1038 // if (settings.device.commInterface == IMU_MODE_I2C)
altb 0:6661e1395e30 1039 // I2CreadBytes(_mAddress, subAddress, dest, count);
altb 0:6661e1395e30 1040 if (settings.device.commInterface == IMU_MODE_SPI)
altb 0:6661e1395e30 1041 SPIreadBytes(_mAddress, subAddress, dest, count);
altb 0:6661e1395e30 1042 }
altb 0:6661e1395e30 1043
altb 0:6661e1395e30 1044 void LSM9DS1::initSPI()
altb 0:6661e1395e30 1045 {
altb 0:6661e1395e30 1046 spi->format(8, 0); //8, 3
altb 0:6661e1395e30 1047 spi->frequency(1000000);
altb 0:6661e1395e30 1048
altb 0:6661e1395e30 1049 *_xgAddress = 1;
altb 0:6661e1395e30 1050 *_mAddress = 1;
altb 0:6661e1395e30 1051
altb 0:6661e1395e30 1052 /*
altb 0:6661e1395e30 1053 pinMode(_xgAddress, OUTPUT);
altb 0:6661e1395e30 1054 digitalWrite(_xgAddress, HIGH);
altb 0:6661e1395e30 1055 pinMode(_mAddress, OUTPUT);
altb 0:6661e1395e30 1056 digitalWrite(_mAddress, HIGH);
altb 0:6661e1395e30 1057
altb 0:6661e1395e30 1058 spi->begin();
altb 0:6661e1395e30 1059 // Maximum SPI frequency is 10MHz, could divide by 2 here:
altb 0:6661e1395e30 1060 spi->setClockDivider(SPI_CLOCK_DIV2);
altb 0:6661e1395e30 1061 // Data is read and written MSb first.
altb 0:6661e1395e30 1062 spi->setBitOrder(MSBFIRST);
altb 0:6661e1395e30 1063 // Data is captured on rising edge of clock (CPHA = 0)
altb 0:6661e1395e30 1064 // Base value of the clock is HIGH (CPOL = 1)
altb 0:6661e1395e30 1065 spi->setDataMode(SPI_MODE0);
altb 0:6661e1395e30 1066 */
altb 0:6661e1395e30 1067 }
altb 0:6661e1395e30 1068
altb 0:6661e1395e30 1069 void LSM9DS1::SPIwriteByte(DigitalOut* csPin, uint8_t subAddress, uint8_t data)
altb 0:6661e1395e30 1070 {
altb 0:6661e1395e30 1071 *csPin = 0;
altb 0:6661e1395e30 1072 wait_us(1);
altb 0:6661e1395e30 1073
altb 0:6661e1395e30 1074 spi->write(subAddress & 0x3F);
altb 0:6661e1395e30 1075 spi->write(data & 0xFF);
altb 0:6661e1395e30 1076
altb 0:6661e1395e30 1077 wait_us(1);
altb 0:6661e1395e30 1078 *csPin = 1;
altb 0:6661e1395e30 1079
altb 0:6661e1395e30 1080 /*
altb 0:6661e1395e30 1081 digitalWrite(csPin, LOW); // Initiate communication
altb 0:6661e1395e30 1082
altb 0:6661e1395e30 1083 // If write, bit 0 (MSB) should be 0
altb 0:6661e1395e30 1084 // If single write, bit 1 should be 0
altb 0:6661e1395e30 1085 spi->transfer(subAddress & 0x3F); // Send Address
altb 0:6661e1395e30 1086 spi->transfer(data); // Send data
altb 0:6661e1395e30 1087
altb 0:6661e1395e30 1088 digitalWrite(csPin, HIGH); // Close communication
altb 0:6661e1395e30 1089 */
altb 0:6661e1395e30 1090 }
altb 0:6661e1395e30 1091
altb 0:6661e1395e30 1092 uint8_t LSM9DS1::SPIreadByte(DigitalOut* csPin, uint8_t subAddress)
altb 0:6661e1395e30 1093 {
altb 0:6661e1395e30 1094 uint8_t temp;
altb 0:6661e1395e30 1095 // Use the multiple read function to read 1 byte.
altb 0:6661e1395e30 1096 // Value is returned to `temp`.
altb 0:6661e1395e30 1097 SPIreadBytes(csPin, subAddress, &temp, 1);
altb 0:6661e1395e30 1098 return temp;
altb 0:6661e1395e30 1099 }
altb 0:6661e1395e30 1100
altb 0:6661e1395e30 1101 void LSM9DS1::SPIreadBytes(DigitalOut* csPin, uint8_t subAddress,
altb 0:6661e1395e30 1102 uint8_t * dest, uint8_t count)
altb 0:6661e1395e30 1103 {
altb 0:6661e1395e30 1104 // To indicate a read, set bit 0 (msb) of first byte to 1
altb 0:6661e1395e30 1105 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
altb 0:6661e1395e30 1106 // Mag SPI port is different. If we're reading multiple bytes,
altb 0:6661e1395e30 1107 // set bit 1 to 1. The remaining six bytes are the address to be read
altb 0:6661e1395e30 1108 if ((csPin == _mAddress) && count > 1)
altb 0:6661e1395e30 1109 rAddress |= 0x40;
altb 0:6661e1395e30 1110
altb 0:6661e1395e30 1111 *csPin = 0;
altb 0:6661e1395e30 1112
altb 0:6661e1395e30 1113 wait_us(1);
altb 0:6661e1395e30 1114
altb 0:6661e1395e30 1115 spi->write(rAddress);
altb 0:6661e1395e30 1116 for (int i=0; i<count; i++)
altb 0:6661e1395e30 1117 dest[i] = spi->write(0xFF);
altb 0:6661e1395e30 1118
altb 0:6661e1395e30 1119 wait_us(1);
altb 0:6661e1395e30 1120 *csPin = 1;
altb 0:6661e1395e30 1121
altb 0:6661e1395e30 1122 /*
altb 0:6661e1395e30 1123 digitalWrite(csPin, LOW); // Initiate communication
altb 0:6661e1395e30 1124 spi->transfer(rAddress);
altb 0:6661e1395e30 1125 for (int i=0; i<count; i++)
altb 0:6661e1395e30 1126 {
altb 0:6661e1395e30 1127 dest[i] = spi->transfer(0x00); // Read into destination array
altb 0:6661e1395e30 1128 }
altb 0:6661e1395e30 1129 digitalWrite(csPin, HIGH); // Close communication
altb 0:6661e1395e30 1130 */
altb 0:6661e1395e30 1131 }
altb 0:6661e1395e30 1132
altb 0:6661e1395e30 1133 void LSM9DS1::initI2C()
altb 0:6661e1395e30 1134 {
altb 0:6661e1395e30 1135 /*
altb 0:6661e1395e30 1136 Wire.begin(); // Initialize I2C library
altb 0:6661e1395e30 1137 */
altb 0:6661e1395e30 1138
altb 0:6661e1395e30 1139 //already initialized in constructor!
altb 0:6661e1395e30 1140 }
altb 0:6661e1395e30 1141
altb 0:6661e1395e30 1142 // Wire.h read and write protocols
altb 0:6661e1395e30 1143 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
altb 0:6661e1395e30 1144 {
altb 0:6661e1395e30 1145 /*
altb 0:6661e1395e30 1146 Wire.beginTransmission(address); // Initialize the Tx buffer
altb 0:6661e1395e30 1147 Wire.write(subAddress); // Put slave register address in Tx buffer
altb 0:6661e1395e30 1148 Wire.write(data); // Put data in Tx buffer
altb 0:6661e1395e30 1149 Wire.endTransmission(); // Send the Tx buffer
altb 0:6661e1395e30 1150 */
altb 0:6661e1395e30 1151 // char temp_data[2] = {subAddress, data};
altb 0:6661e1395e30 1152 // i2c.write(address, temp_data, 2);
altb 0:6661e1395e30 1153 }
altb 0:6661e1395e30 1154
altb 0:6661e1395e30 1155 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
altb 0:6661e1395e30 1156 {
altb 0:6661e1395e30 1157 /*
altb 0:6661e1395e30 1158 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
altb 0:6661e1395e30 1159 uint8_t data; // `data` will store the register data
altb 0:6661e1395e30 1160
altb 0:6661e1395e30 1161 Wire.beginTransmission(address); // Initialize the Tx buffer
altb 0:6661e1395e30 1162 Wire.write(subAddress); // Put slave register address in Tx buffer
altb 0:6661e1395e30 1163 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
altb 0:6661e1395e30 1164 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
altb 0:6661e1395e30 1165 while ((Wire.available() < 1) && (timeout-- > 0))
altb 0:6661e1395e30 1166 delay(1);
altb 0:6661e1395e30 1167
altb 0:6661e1395e30 1168 if (timeout <= 0)
altb 0:6661e1395e30 1169 return 255; //! Bad! 255 will be misinterpreted as a good value.
altb 0:6661e1395e30 1170
altb 0:6661e1395e30 1171 data = Wire.read(); // Fill Rx buffer with result
altb 0:6661e1395e30 1172 return data; // Return data read from slave register
altb 0:6661e1395e30 1173 */
altb 0:6661e1395e30 1174 char data;
altb 0:6661e1395e30 1175 char temp[1] = {subAddress};
altb 0:6661e1395e30 1176 /*
altb 0:6661e1395e30 1177 i2c.write(address, temp, 1);
altb 0:6661e1395e30 1178 //i2c.write(address & 0xFE);
altb 0:6661e1395e30 1179 temp[1] = 0x00;
altb 0:6661e1395e30 1180 i2c.write(address, temp, 1);
altb 0:6661e1395e30 1181 //i2c.write( address | 0x01);
altb 0:6661e1395e30 1182 int a = i2c.read(address, &data, 1);*/
altb 0:6661e1395e30 1183 return data;
altb 0:6661e1395e30 1184 }
altb 0:6661e1395e30 1185
altb 0:6661e1395e30 1186 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
altb 0:6661e1395e30 1187 {
altb 0:6661e1395e30 1188 /*
altb 0:6661e1395e30 1189 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
altb 0:6661e1395e30 1190 Wire.beginTransmission(address); // Initialize the Tx buffer
altb 0:6661e1395e30 1191 // Next send the register to be read. OR with 0x80 to indicate multi-read.
altb 0:6661e1395e30 1192 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
altb 0:6661e1395e30 1193
altb 0:6661e1395e30 1194 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
altb 0:6661e1395e30 1195 uint8_t i = 0;
altb 0:6661e1395e30 1196 Wire.requestFrom(address, count); // Read bytes from slave register address
altb 0:6661e1395e30 1197 while ((Wire.available() < count) && (timeout-- > 0))
altb 0:6661e1395e30 1198 delay(1);
altb 0:6661e1395e30 1199 if (timeout <= 0)
altb 0:6661e1395e30 1200 return -1;
altb 0:6661e1395e30 1201
altb 0:6661e1395e30 1202 for (int i=0; i<count;)
altb 0:6661e1395e30 1203 {
altb 0:6661e1395e30 1204 if (Wire.available())
altb 0:6661e1395e30 1205 {
altb 0:6661e1395e30 1206 dest[i++] = Wire.read();
altb 0:6661e1395e30 1207 }
altb 0:6661e1395e30 1208 }
altb 0:6661e1395e30 1209 return count;
altb 0:6661e1395e30 1210 */
altb 0:6661e1395e30 1211 int i;
altb 0:6661e1395e30 1212 char temp_dest[count];
altb 0:6661e1395e30 1213 char temp[1] = {subAddress};
altb 0:6661e1395e30 1214 //i2c.write(address, temp, 1);
altb 0:6661e1395e30 1215 //i2c.read(address, temp_dest, count);
altb 0:6661e1395e30 1216
altb 0:6661e1395e30 1217 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
altb 0:6661e1395e30 1218 for (i=0; i < count; i++) {
altb 0:6661e1395e30 1219 dest[i] = temp_dest[i];
altb 0:6661e1395e30 1220 }
altb 0:6661e1395e30 1221 return count;
altb 0:6661e1395e30 1222 }
altb 0:6661e1395e30 1223