USB device stack, fixes for USBSerial & KL25Z
Fork of USBDevice by
USBHAL_KL25Z.cpp
00001 /* Copyright (c) 2010-2011 mbed.org, MIT License 00002 * 00003 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software 00004 * and associated documentation files (the "Software"), to deal in the Software without 00005 * restriction, including without limitation the rights to use, copy, modify, merge, publish, 00006 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the 00007 * Software is furnished to do so, subject to the following conditions: 00008 * 00009 * The above copyright notice and this permission notice shall be included in all copies or 00010 * substantial portions of the Software. 00011 * 00012 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING 00013 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 00014 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 00015 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 00016 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 00017 */ 00018 00019 #if defined(TARGET_KL25Z) | defined(TARGET_KL46Z) | defined(TARGET_K20D5M) | defined(TARGET_K64F) 00020 00021 #include "USBHAL.h" 00022 00023 USBHAL * USBHAL::instance; 00024 00025 static volatile int epComplete = 0; 00026 00027 // Convert physical endpoint number to register bit 00028 #define EP(endpoint) (1<<(endpoint)) 00029 00030 // Convert physical to logical 00031 #define PHY_TO_LOG(endpoint) ((endpoint)>>1) 00032 00033 // Get endpoint direction 00034 #define IN_EP(endpoint) ((endpoint) & 1U ? true : false) 00035 #define OUT_EP(endpoint) ((endpoint) & 1U ? false : true) 00036 00037 #define BD_OWN_MASK (1<<7) 00038 #define BD_DATA01_MASK (1<<6) 00039 #define BD_KEEP_MASK (1<<5) 00040 #define BD_NINC_MASK (1<<4) 00041 #define BD_DTS_MASK (1<<3) 00042 #define BD_STALL_MASK (1<<2) 00043 00044 #define TX 1 00045 #define RX 0 00046 #define ODD 0 00047 #define EVEN 1 00048 // this macro waits a physical endpoint number 00049 #define EP_BDT_IDX(ep, dir, odd) (((ep * 4) + (2 * dir) + (1 * odd))) 00050 00051 #define SETUP_TOKEN 0x0D 00052 #define IN_TOKEN 0x09 00053 #define OUT_TOKEN 0x01 00054 #define TOK_PID(idx) ((bdt[idx].info >> 2) & 0x0F) 00055 00056 // for each endpt: 8 bytes 00057 typedef struct BDT { 00058 uint8_t info; // BD[0:7] 00059 uint8_t dummy; // RSVD: BD[8:15] 00060 uint16_t byte_count; // BD[16:32] 00061 uint32_t address; // Addr 00062 } BDT; 00063 00064 00065 // there are: 00066 // * 16 bidirectionnal endpt -> 32 physical endpt 00067 // * as there are ODD and EVEN buffer -> 32*2 bdt 00068 __attribute__((__aligned__(512))) BDT bdt[NUMBER_OF_PHYSICAL_ENDPOINTS * 2]; 00069 uint8_t * endpoint_buffer[(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2]; 00070 uint8_t * endpoint_buffer_iso[2*2]; 00071 00072 static uint8_t set_addr = 0; 00073 static uint8_t addr = 0; 00074 00075 static uint32_t Data1 = 0x55555555; 00076 00077 static uint32_t frameNumber() { 00078 return((USB0->FRMNUML | (USB0->FRMNUMH << 8)) & 0x07FF); 00079 } 00080 00081 uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) { 00082 return 0; 00083 } 00084 00085 USBHAL::USBHAL(void) { 00086 // Disable IRQ 00087 NVIC_DisableIRQ(USB0_IRQn); 00088 00089 #if defined(TARGET_K64F) 00090 MPU->CESR=0; 00091 #endif 00092 // fill in callback array 00093 epCallback[0] = &USBHAL::EP1_OUT_callback; 00094 epCallback[1] = &USBHAL::EP1_IN_callback; 00095 epCallback[2] = &USBHAL::EP2_OUT_callback; 00096 epCallback[3] = &USBHAL::EP2_IN_callback; 00097 epCallback[4] = &USBHAL::EP3_OUT_callback; 00098 epCallback[5] = &USBHAL::EP3_IN_callback; 00099 epCallback[6] = &USBHAL::EP4_OUT_callback; 00100 epCallback[7] = &USBHAL::EP4_IN_callback; 00101 epCallback[8] = &USBHAL::EP5_OUT_callback; 00102 epCallback[9] = &USBHAL::EP5_IN_callback; 00103 epCallback[10] = &USBHAL::EP6_OUT_callback; 00104 epCallback[11] = &USBHAL::EP6_IN_callback; 00105 epCallback[12] = &USBHAL::EP7_OUT_callback; 00106 epCallback[13] = &USBHAL::EP7_IN_callback; 00107 epCallback[14] = &USBHAL::EP8_OUT_callback; 00108 epCallback[15] = &USBHAL::EP8_IN_callback; 00109 epCallback[16] = &USBHAL::EP9_OUT_callback; 00110 epCallback[17] = &USBHAL::EP9_IN_callback; 00111 epCallback[18] = &USBHAL::EP10_OUT_callback; 00112 epCallback[19] = &USBHAL::EP10_IN_callback; 00113 epCallback[20] = &USBHAL::EP11_OUT_callback; 00114 epCallback[21] = &USBHAL::EP11_IN_callback; 00115 epCallback[22] = &USBHAL::EP12_OUT_callback; 00116 epCallback[23] = &USBHAL::EP12_IN_callback; 00117 epCallback[24] = &USBHAL::EP13_OUT_callback; 00118 epCallback[25] = &USBHAL::EP13_IN_callback; 00119 epCallback[26] = &USBHAL::EP14_OUT_callback; 00120 epCallback[27] = &USBHAL::EP14_IN_callback; 00121 epCallback[28] = &USBHAL::EP15_OUT_callback; 00122 epCallback[29] = &USBHAL::EP15_IN_callback; 00123 00124 00125 // choose usb src as PLL 00126 SIM->SOPT2 |= (SIM_SOPT2_USBSRC_MASK | SIM_SOPT2_PLLFLLSEL_MASK); 00127 00128 // enable OTG clock 00129 SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK; 00130 00131 // Attach IRQ 00132 instance = this; 00133 NVIC_SetVector(USB0_IRQn, (uint32_t)&_usbisr); 00134 NVIC_EnableIRQ(USB0_IRQn); 00135 00136 // USB Module Configuration 00137 // Reset USB Module 00138 USB0->USBTRC0 |= USB_USBTRC0_USBRESET_MASK; 00139 while(USB0->USBTRC0 & USB_USBTRC0_USBRESET_MASK); 00140 00141 // Set BDT Base Register 00142 USB0->BDTPAGE1 = (uint8_t)((uint32_t)bdt>>8); 00143 USB0->BDTPAGE2 = (uint8_t)((uint32_t)bdt>>16); 00144 USB0->BDTPAGE3 = (uint8_t)((uint32_t)bdt>>24); 00145 00146 // Clear interrupt flag 00147 USB0->ISTAT = 0xff; 00148 00149 // USB Interrupt Enablers 00150 USB0->INTEN |= USB_INTEN_TOKDNEEN_MASK | 00151 USB_INTEN_SOFTOKEN_MASK | 00152 USB_INTEN_ERROREN_MASK | 00153 USB_INTEN_USBRSTEN_MASK; 00154 00155 // Disable weak pull downs 00156 USB0->USBCTRL &= ~(USB_USBCTRL_PDE_MASK | USB_USBCTRL_SUSP_MASK); 00157 00158 USB0->USBTRC0 |= 0x40; 00159 } 00160 00161 USBHAL::~USBHAL(void) { } 00162 00163 void USBHAL::connect(void) { 00164 // enable USB 00165 USB0->CTL |= USB_CTL_USBENSOFEN_MASK; 00166 // Pull up enable 00167 USB0->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK; 00168 } 00169 00170 void USBHAL::disconnect(void) { 00171 // disable USB 00172 USB0->CTL &= ~USB_CTL_USBENSOFEN_MASK; 00173 // Pull up disable 00174 USB0->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK; 00175 00176 //Free buffers if required: 00177 for (int i = 0; i<(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2; i++) { 00178 free(endpoint_buffer[i]); 00179 endpoint_buffer[i] = NULL; 00180 } 00181 free(endpoint_buffer_iso[2]); 00182 endpoint_buffer_iso[2] = NULL; 00183 free(endpoint_buffer_iso[0]); 00184 endpoint_buffer_iso[0] = NULL; 00185 } 00186 00187 void USBHAL::configureDevice(void) { 00188 // not needed 00189 } 00190 00191 void USBHAL::unconfigureDevice(void) { 00192 // not needed 00193 } 00194 00195 void USBHAL::setAddress(uint8_t address) { 00196 // we don't set the address now otherwise the usb controller does not ack 00197 // we set a flag instead 00198 // see usbisr when an IN token is received 00199 set_addr = 1; 00200 addr = address; 00201 } 00202 00203 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) { 00204 uint32_t handshake_flag = 0; 00205 uint8_t * buf; 00206 00207 if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) { 00208 return false; 00209 } 00210 00211 uint32_t log_endpoint = PHY_TO_LOG(endpoint); 00212 00213 if ((flags & ISOCHRONOUS) == 0) { 00214 handshake_flag = USB_ENDPT_EPHSHK_MASK; 00215 if (IN_EP(endpoint)) { 00216 if (endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] == NULL) 00217 endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] = (uint8_t *) malloc (64*2); 00218 buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)][0]; 00219 } else { 00220 if (endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] == NULL) 00221 endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] = (uint8_t *) malloc (64*2); 00222 buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)][0]; 00223 } 00224 } else { 00225 if (IN_EP(endpoint)) { 00226 if (endpoint_buffer_iso[2] == NULL) 00227 endpoint_buffer_iso[2] = (uint8_t *) malloc (1023*2); 00228 buf = &endpoint_buffer_iso[2][0]; 00229 } else { 00230 if (endpoint_buffer_iso[0] == NULL) 00231 endpoint_buffer_iso[0] = (uint8_t *) malloc (1023*2); 00232 buf = &endpoint_buffer_iso[0][0]; 00233 } 00234 } 00235 00236 // IN endpt -> device to host (TX) 00237 if (IN_EP(endpoint)) { 00238 USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag | // ep handshaking (not if iso endpoint) 00239 USB_ENDPT_EPTXEN_MASK; // en TX (IN) tran 00240 bdt[EP_BDT_IDX(log_endpoint, TX, ODD )].address = (uint32_t) buf; 00241 bdt[EP_BDT_IDX(log_endpoint, TX, EVEN)].address = 0; 00242 } 00243 // OUT endpt -> host to device (RX) 00244 else { 00245 USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag | // ep handshaking (not if iso endpoint) 00246 USB_ENDPT_EPRXEN_MASK; // en RX (OUT) tran. 00247 bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].byte_count = maxPacket; 00248 bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].address = (uint32_t) buf; 00249 bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].info = BD_OWN_MASK | BD_DTS_MASK; 00250 bdt[EP_BDT_IDX(log_endpoint, RX, EVEN)].info = 0; 00251 } 00252 00253 Data1 |= (1 << endpoint); 00254 00255 return true; 00256 } 00257 00258 // read setup packet 00259 void USBHAL::EP0setup(uint8_t *buffer) { 00260 uint32_t sz; 00261 endpointReadResult(EP0OUT, buffer, &sz); 00262 } 00263 00264 void USBHAL::EP0readStage(void) { 00265 Data1 &= ~1UL; // set DATA0 00266 bdt[0].info = (BD_DTS_MASK | BD_OWN_MASK); 00267 } 00268 00269 void USBHAL::EP0read(void) { 00270 uint32_t idx = EP_BDT_IDX(PHY_TO_LOG(EP0OUT), RX, 0); 00271 bdt[idx].byte_count = MAX_PACKET_SIZE_EP0; 00272 } 00273 00274 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) { 00275 uint32_t sz; 00276 endpointReadResult(EP0OUT, buffer, &sz); 00277 return sz; 00278 } 00279 00280 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) { 00281 endpointWrite(EP0IN, buffer, size); 00282 } 00283 00284 void USBHAL::EP0getWriteResult(void) { 00285 } 00286 00287 void USBHAL::EP0stall(void) { 00288 stallEndpoint(EP0OUT); 00289 } 00290 00291 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) { 00292 endpoint = PHY_TO_LOG(endpoint); 00293 uint32_t idx = EP_BDT_IDX(endpoint, RX, 0); 00294 bdt[idx].byte_count = maximumSize; 00295 return EP_PENDING; 00296 } 00297 00298 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) { 00299 uint32_t n, sz, idx, setup = 0; 00300 uint8_t not_iso; 00301 uint8_t * ep_buf; 00302 00303 uint32_t log_endpoint = PHY_TO_LOG(endpoint); 00304 00305 if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) { 00306 return EP_INVALID; 00307 } 00308 00309 // if read on a IN endpoint -> error 00310 if (IN_EP(endpoint)) { 00311 return EP_INVALID; 00312 } 00313 00314 idx = EP_BDT_IDX(log_endpoint, RX, 0); 00315 sz = bdt[idx].byte_count; 00316 not_iso = USB0->ENDPOINT[log_endpoint].ENDPT & USB_ENDPT_EPHSHK_MASK; 00317 00318 //for isochronous endpoint, we don't wait an interrupt 00319 if ((log_endpoint != 0) && not_iso && !(epComplete & EP(endpoint))) { 00320 return EP_PENDING; 00321 } 00322 00323 if ((log_endpoint == 0) && (TOK_PID(idx) == SETUP_TOKEN)) { 00324 setup = 1; 00325 } 00326 00327 // non iso endpoint 00328 if (not_iso) { 00329 ep_buf = endpoint_buffer[idx]; 00330 } else { 00331 ep_buf = endpoint_buffer_iso[0]; 00332 } 00333 00334 for (n = 0; n < sz; n++) { 00335 buffer[n] = ep_buf[n]; 00336 } 00337 00338 if (((Data1 >> endpoint) & 1) == ((bdt[idx].info >> 6) & 1)) { 00339 if (setup && (buffer[6] == 0)) // if no setup data stage, 00340 Data1 &= ~1UL; // set DATA0 00341 else 00342 Data1 ^= (1 << endpoint); 00343 } 00344 00345 if (((Data1 >> endpoint) & 1)) { 00346 bdt[idx].info = BD_DTS_MASK | BD_DATA01_MASK | BD_OWN_MASK; 00347 } 00348 else { 00349 bdt[idx].info = BD_DTS_MASK | BD_OWN_MASK; 00350 } 00351 00352 USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK; 00353 *bytesRead = sz; 00354 00355 epComplete &= ~EP(endpoint); 00356 return EP_COMPLETED; 00357 } 00358 00359 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) { 00360 uint32_t idx, n; 00361 uint8_t * ep_buf; 00362 00363 if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) { 00364 return EP_INVALID; 00365 } 00366 00367 // if write on a OUT endpoint -> error 00368 if (OUT_EP(endpoint)) { 00369 return EP_INVALID; 00370 } 00371 00372 idx = EP_BDT_IDX(PHY_TO_LOG(endpoint), TX, 0); 00373 bdt[idx].byte_count = size; 00374 00375 00376 // non iso endpoint 00377 if (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPHSHK_MASK) { 00378 ep_buf = endpoint_buffer[idx]; 00379 } else { 00380 ep_buf = endpoint_buffer_iso[2]; 00381 } 00382 00383 for (n = 0; n < size; n++) { 00384 ep_buf[n] = data[n]; 00385 } 00386 00387 if ((Data1 >> endpoint) & 1) { 00388 bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK; 00389 } else { 00390 bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK | BD_DATA01_MASK; 00391 } 00392 00393 Data1 ^= (1 << endpoint); 00394 00395 return EP_PENDING; 00396 } 00397 00398 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) { 00399 if (epComplete & EP(endpoint)) { 00400 epComplete &= ~EP(endpoint); 00401 return EP_COMPLETED; 00402 } 00403 00404 return EP_PENDING; 00405 } 00406 00407 void USBHAL::stallEndpoint(uint8_t endpoint) { 00408 USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT |= USB_ENDPT_EPSTALL_MASK; 00409 } 00410 00411 void USBHAL::unstallEndpoint(uint8_t endpoint) { 00412 USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT &= ~USB_ENDPT_EPSTALL_MASK; 00413 } 00414 00415 bool USBHAL::getEndpointStallState(uint8_t endpoint) { 00416 uint8_t stall = (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPSTALL_MASK); 00417 return (stall) ? true : false; 00418 } 00419 00420 void USBHAL::remoteWakeup(void) { 00421 // [TODO] 00422 } 00423 00424 00425 void USBHAL::_usbisr(void) { 00426 instance->usbisr(); 00427 } 00428 00429 00430 void USBHAL::usbisr(void) { 00431 uint8_t i; 00432 uint8_t istat = USB0->ISTAT; 00433 00434 // reset interrupt 00435 if (istat & USB_ISTAT_USBRST_MASK) { 00436 // disable all endpt 00437 for(i = 0; i < 16; i++) { 00438 USB0->ENDPOINT[i].ENDPT = 0x00; 00439 } 00440 00441 // enable control endpoint 00442 realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0); 00443 realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0); 00444 00445 Data1 = 0x55555555; 00446 USB0->CTL |= USB_CTL_ODDRST_MASK; 00447 00448 USB0->ISTAT = 0xFF; // clear all interrupt status flags 00449 USB0->ERRSTAT = 0xFF; // clear all error flags 00450 USB0->ERREN = 0xFF; // enable error interrupt sources 00451 USB0->ADDR = 0x00; // set default address 00452 00453 // reset bus for USBDevice layer 00454 busReset(); 00455 00456 return; 00457 } 00458 00459 // resume interrupt 00460 if (istat & USB_ISTAT_RESUME_MASK) { 00461 USB0->ISTAT = USB_ISTAT_RESUME_MASK; 00462 } 00463 00464 // SOF interrupt 00465 if (istat & USB_ISTAT_SOFTOK_MASK) { 00466 USB0->ISTAT = USB_ISTAT_SOFTOK_MASK; 00467 // SOF event, read frame number 00468 SOF(frameNumber()); 00469 } 00470 00471 // stall interrupt 00472 if (istat & 1<<7) { 00473 if (USB0->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK) 00474 USB0->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK; 00475 USB0->ISTAT |= USB_ISTAT_STALL_MASK; 00476 } 00477 00478 // token interrupt 00479 if (istat & 1<<3) { 00480 uint32_t num = (USB0->STAT >> 4) & 0x0F; 00481 uint32_t dir = (USB0->STAT >> 3) & 0x01; 00482 uint32_t ev_odd = (USB0->STAT >> 2) & 0x01; 00483 00484 // setup packet 00485 if ((num == 0) && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == SETUP_TOKEN)) { 00486 Data1 &= ~0x02; 00487 bdt[EP_BDT_IDX(0, TX, EVEN)].info &= ~BD_OWN_MASK; 00488 bdt[EP_BDT_IDX(0, TX, ODD)].info &= ~BD_OWN_MASK; 00489 00490 // EP0 SETUP event (SETUP data received) 00491 EP0setupCallback(); 00492 00493 } else { 00494 // OUT packet 00495 if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == OUT_TOKEN) { 00496 if (num == 0) 00497 EP0out(); 00498 else { 00499 epComplete |= (1 << EP(num)); 00500 if ((instance->*(epCallback[EP(num) - 2]))()) { 00501 epComplete &= ~(1 << EP(num)); 00502 } 00503 } 00504 } 00505 00506 // IN packet 00507 if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == IN_TOKEN) { 00508 if (num == 0) { 00509 EP0in(); 00510 if (set_addr == 1) { 00511 USB0->ADDR = addr & 0x7F; 00512 set_addr = 0; 00513 } 00514 } 00515 else { 00516 epComplete |= (1 << (EP(num) + 1)); 00517 if ((instance->*(epCallback[EP(num) + 1 - 2]))()) { 00518 epComplete &= ~(1 << (EP(num) + 1)); 00519 } 00520 } 00521 } 00522 } 00523 00524 USB0->ISTAT = USB_ISTAT_TOKDNE_MASK; 00525 } 00526 00527 // sleep interrupt 00528 if (istat & 1<<4) { 00529 USB0->ISTAT |= USB_ISTAT_SLEEP_MASK; 00530 } 00531 00532 // error interrupt 00533 if (istat & USB_ISTAT_ERROR_MASK) { 00534 USB0->ERRSTAT = 0xFF; 00535 USB0->ISTAT |= USB_ISTAT_ERROR_MASK; 00536 } 00537 } 00538 00539 00540 #endif
Generated on Wed Jul 13 2022 17:00:18 by 1.7.2